English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 345-351 前一篇   后一篇

• 综述与评论 •

荧光碳纳米颗粒:新进展和技术挑战*

胡胜亮1,2**;白培康2;孙景3;曹士锐2   

  1. (1. 中北大学仪器科学与动态测度教育部重点实验室 电子测试技术国家重点实验室 太原 030051;2. 中北大学材料科学与工程学院 太原 030051;3. 天津大学材料科学与工程学院 天津 300072)
  • 收稿日期:2009-04-15 修回日期:2009-05-22 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 胡胜亮 E-mail:hsliang@yeah.net
  • 基金资助:

    山西省青年科技研究基金;高等学校博士学科点专项科研基金

Fluorescent Carbon Nanoparticles: Recent Achievements and Technical Challenges

Hu Shengliang1,2**;  Bai Peikang2;  Sun Jing3;  Cao Shirui2   

  1. (1. Key Laboratory of Instrumentation Science & Dynamic Measurement (North University of China), Ministry of Education, National Key Laboratory of Science and Technology on Electronic Test and Measurement, Taiyuan 030051, China; 2. School of Materials Science and Engineering, North University of China, Taiyuan 030051, China; 3. School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China)
  • Received:2009-04-15 Revised:2009-05-22 Online:2010-03-24 Published:2010-03-18
  • Contact: Hu Shengliang E-mail:hsliang@yeah.net

与其它荧光纳米粒子相比,荧光碳纳米颗粒不仅具有良好生物相容性和易于表面功能化等优点,还具有发光稳定并可实现上转换荧光发射的特性,所以在生物医药领域具有重要的应用价值。结合近年来的最新研究成果,本文综述了金刚石、石墨和非晶等不同结构的荧光碳纳米颗粒的制备方法及其局限性;分析了不同结构碳纳米颗粒的荧光发射特性和在生物技术中应用的优缺点;阐述了荧光碳纳米颗粒在今后研究中需要解决的问题和发展方向。

Comparing with other fluorescent nanoparticles (NPs), fluorescent carbon NPs hold not only momentous properties such as good biocompatibility and facile surface functionalizability, but also excellent photostability and up-converting optical property. Therefore, fluorescent carbon NPs have a high potential application in life science and nanomedicine. To summarize the important results of recent studies, this review shows the synthetic methods and its corresponding limitations of fluorescent carbon NPs with different structures including diamond, graphite and non-crystalline, evaluates the fluorescent properties of carbon NPs with different structures, and their merit and challenge in biotechnology application. The important question to research and development directions for fluorescent carbon NPs in the future are described.

Contents
1 Introduction
1.1 Critical questions faced by general fluorescent NPs in life science applications
1.2 Research value of fluorescent carbon NPs
2 Fluorescent carbon NPs with diamond structure
2.1 Doping type
2.2 Surface modification type
3 Fluorescent carbon NPs with other structure
3.1 Fluorescent carbon NPs with graphite structure
3.2 Fluorescent carbon NPs with non-crystalline structure
4 Conclusion and outlook

中图分类号: 

()

[ 1 ]  Rosi N L, Mirkin C A. Chem. Rev. , 2005, 105: 1547—1562
[ 2 ]  Thomas S W, Joly G D, Swager T M. Chem. Rev. , 2007, 107:1339—1386
[ 3 ]  Bruchez M, Moronne M, Gin P. Science, 1988, 281:2013—2016
[ 4 ]  Hodes G. Adv. Mater. , 2007, 19: 639—655
[ 5 ]  Gao X, Cui Y, Levenson R M. Nat. Biotech. , 2004, 22:969—976
[ 6 ]  DerfusA M, Chan W C W, Bhatia S N, et al. Nano Lett. ,2004, 4: 11—18
[ 7 ]  Fu A, Gu W, Boussert B, et al. Nano Lett. , 2007, 7:179—182
[ 8 ]  Hussain S M, Braydich-Stolle L K, Schrand A M, et al. Adv.Mater. , 2009, 21: 1—11
[ 9 ]  Yang H, Liu C, Yang D, et al. J. App l. Toxicol. , 2009, 29:69—78
[ 10 ]  Li J J, Zou L, Hartono D, et al. Adv. Mater. , 2008, 20:138—142
[ 11 ]  Thorek D L J, Tsourkas A. Biomaterials, 2008, 29:3583—3590
[ 12 ]  Jong W H D, Hagens W I, Krystek P, et al. Biomaterials,2008, 29: 1912—1919
[ 13 ]  Rao D A, Robinson J R. J. Control. Release, 2008, 132:e45—e47
[ 14 ]  Napierska D, Thomassen L C J, Rabolli V, et al. Small, 2009,5: 846—853
[ 15 ]  Park J H, Maltzahn G, Ruoslahti E, et al. Nat. Mater. , 2009,8: 331—336
[ 16 ]  Yu K O, Grabinski C M, Schrand A M, et al. J. Nanopart.Res. , 2009, 11: 15—24
[ 17 ]  Hamilton R F, Thakur S A, Holian A. Free RadicalBio. Med. ,2008, 44: 1246—1258
[ 18 ]  Barnes C A, Elsaesser A, Arkusz J, et al. Nano Lett. , 2008,8: 3069—3074
[ 19 ]  Alsharif N H, Berger C E M, Varanasi S S, et al. Small, 2009,5: 221—228
[ 20 ]  Brunner T J, Wick P, Manser P, et al. Environ. Sci. Technol. ,2006, 40: 4374—4381
[ 21 ]  Lin W, Huang Y, Zhou X, et al. Toxicol. App l. Pharm. ,2006, 217: 252—259
[ 22 ]  Chang J S, Chang K L B, Hwang D F, et al. Environ. Sci.Technol. , 2007, 41: 2064—2068
[ 23 ]  Schwertfeger H, Fokin A A, Schreiner P R. Angew. Chem. Int.Ed. , 2008, 47: 1022—1036
[ 24 ]  Yu S J, KangM W, Chang H C, et al. J. Am. Chem. Soc. ,2005, 127: 17604—17605
[ 25 ]  Vaijayanthimala V, Chang H C. Nanomedicine, 2009, 4:47—55
[ 26 ]  Xing Y, Dai L. Nanomedicine, 2009, 4: 207—218
[ 27 ]  Wee T L, Tzeng Y K, Han C C, et al. J. Phys. Chem. A,2007, 111: 9379—9386
[ 28 ]  Cao L, Wang X, Meziani M J, et al. J. Am. Soc. Chem. ,2007, 129: 11318—11319
[ 29 ]  Dion I, Baquey C, Monties J R. Int. J. Artif. Organs. , 1993,16: 623—627
[ 30 ]  Krueger A. Chem. Eur. J. , 2008, 14: 1382—1390
[ 31 ]  Yang W S, Auciello O, Butler J E, et al. Nat. Mater. , 2002,1: 253—257
[ 32 ]  HartlA, Schmich E, Garrido J A, et al. Nat. Mater. , 2004, 3:736—742
[ 33 ]  Kong X L, Huang L C L, Liau S C V, et al. Anal. Chem. ,2005, 77: 4273—4277
[ 34 ]  Vial S, Mansuy C, Sagan S, et al. Chembiochem, 2008, 9:2113—2119
[ 35 ]  KruegerA, Stegk J, Liang Y J, et al. Langmuir, 2008, 24:4200—4204
[ 36 ]  Fu C C, Lee H Y, Chen K, et al. Proc. Natl. Acad. Sci.USA, 2007, 104: 727—732
[ 37 ]  Treussart F, Jacques V, Wu E, et al. Physica B: Condensed Matter, 2006, 376: 926—929
[ 38 ]  Neugart F, Zappe A, Jelezko F, et al. Nano Lett. , 2007, 7:3588—3591
[ 39 ]  Chang Y R, Lee H Y, Chen K, et al. Nat. Nanotech. , 2008,3: 284—288
[ 40 ]  Wee T L, Mau Y W, Chang H C, et al. Diam. Relat. Mater. ,2009, 18: 567—573
[ 41 ]  Hu S L, Sun J, Du X, et al. Diam. Relat. Mater. , 2008, 17:142—146
[ 42 ]  Hu S L, Tian F, Bai P K, et al. Mater. Sci. Eng. B, 2009,157: 11—14
[ 43 ]  Hu S L, Niu K, Sun J, et al. J. Mater. Chem. , 2009, 19:484—488
[ 44 ]  Robertson J. Mater. Sci. Eng. R, 2002, 37: 129—281
[ 45 ]  Zhang R Q, Bertran E, Lee S T. Diam. Relat. Mater. , 1998,7: 1663—1668
[ 46 ]  Sun Y P, Zhou B, Lin Y, et al. J. Am. Chem. Soc. , 2006,128: 7756—7757
[ 47 ]  Cahalan M D, Parker I, Wei S H, et al. Nat. Immunol. , 2006,2: 872—880
[ 48 ]  Helmchen F, Denk W. Nat. Methods, 2005, 2: 932—940
[ 49 ]  Zhou J, Booker C, Li R. J. Am. Chem. Soc. , 2007, 129:744—745
[ 50 ]  Zhao Q L, Zhang Z L, Huang B H, et al. Chem. Commun. ,2008, 5116—5118
[ 51 ]  Liu H, Ye T, Mao C. Angew. Chem. Int. Ed. , 2007, 46:6473—6475
[ 52 ]  Bourlinos A B, Stassinopoulos A, AnglosD, et al. Small, 2008,4: 455—458
[ 53 ]  Bourlinos A B, Stassinopoulos A, Anglos D, et al. Chem. Mater. , 2008, 20: 4539—4541

[1] 于兰, 薛沛然, 李欢欢, 陶冶, 陈润锋, 黄维. 圆偏振发光性质的热活化延迟荧光材料及电致发光器件[J]. 化学进展, 2022, 34(9): 1996-2011.
[2] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[3] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[4] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[5] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[6] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[7] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[8] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[9] 李彬, 于颖, 幸国香, 邢金峰, 刘万兴, 张天永. 手性无机纳米材料圆偏振发光的研究进展[J]. 化学进展, 2022, 34(11): 2340-2350.
[10] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[11] 王振, 李曦, 栗园园, 王其, 卢晓梅, 范曲立. 可激活的NIR-Ⅱ探针用于肿瘤成像[J]. 化学进展, 2022, 34(1): 198-206.
[12] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[13] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[14] 赵丹, 王昌涛, 苏磊, 张学记. 荧光纳米材料在病原微生物检测中的应用[J]. 化学进展, 2021, 33(9): 1482-1495.
[15] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.