English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 338-344 前一篇   后一篇

• 综述与评论 •

铂纳米晶的形状控制合成及应用*

路蕾蕾;尹鸽平**   

  1. (哈尔滨工业大学化工学院  哈尔滨 150001)
  • 收稿日期:2009-03-02 修回日期:2009-03-22 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 尹鸽平 E-mail:yingphit@hit.edu.cn
  • 基金资助:

    Pt/CNT 的修饰原理、方法及其对阴极催化剂稳定性的影响机理;二甲醚的电化学氧化机理及其高活性催化剂研究

Shape-Controlled Synthesis and Applications of Platinum Nanocrystals

Lu Leilei; Yin Geping**   

  1. (School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, China)
  • Received:2009-03-02 Revised:2009-03-22 Online:2010-03-24 Published:2010-03-18
  • Contact: Yin Geping E-mail:yingphit@hit.edu.cn

形状控制的铂纳米晶由于具有高的选择性和催化活性,近年来受到越来越多的关注。各种低指数晶面所围成的铂纳米晶,包括立方体、四面体、八面体、枝状晶体等可以通过胶体法或热解法来制备。表面具有高指数晶面结构的二十四面体等多面体也已经由电化学方法得到。本文评述了形状控制的铂纳米晶的合成方法、表征和应用等方面的进展,分析了铂纳米晶稳定性的影响因素,并对目前铂纳米晶合成及应用研究中存在的主要问题和发展前景进行了探讨和展望。

Shape-controlled platinum nanocrystals are attracting more and more attention in recent years due to the high selectivity and reactivity. Colloidal or thermal decomposition method can be used to synthesis platinum nanocrystals enclosed by low index planes including cubes, tetrahedrons, octahedrons and dentrites et al. Un-conventional polyhedrons such as tetrahexahedrons bound by high index planes have also been achieved by electrochemical method. This paper reviewes the latest research progress in the preparation, characterization and applications of shape-controlled platinum nanocrystals. The factors influencing the stability of platinum nanocrystals are analyzed. Finally, the existing problems in this area are discussed and the future research trends are prospected.

Contents
1 Introduction
2 Synthesis methods
2.1 Colloidal method
2.2 Thermal decomposition method
2.3 Electrochemical method
3 Applications of shape-controlled platinum nanocrystals in catalysis
4 Analysis of shape and size stability of platinum nanocrystals
5 Summary and outlook

中图分类号: 

()

[ 1 ]  Xia Y, Xiong Y, Lim B, Skrabalak S E. Angew. Chem. Int. Ed. , 2009, 48: 60—103
[ 2 ]  Ahmadi T S, Wang Z L, Green T C, et al. Science, 1996, 272: 1924—1926
[ 3 ]  Wang C, Daimon H, Onodera T, et al. Angew. Chem. Int. Ed. , 2008, 47: 3588—3591
[ 4 ]  Song H, Kim F, Yang P D, et al. J. Phys. Chem. B, 2005, 109: 188—193
[ 5 ]  Sun Y, Xia Y. Science, 2002, 298: 2176—2179
[ 6 ]  Hernandez J, Solla-Gullon J, Herrero E, et al. J. Phys. Chem. C, 2007, 111: 14078—14083
[ 7 ]  Zhang Y W, GrassM E, Kuhn J N, et al. J. Am. Chem. Soc. , 2008, 130: 5868—5869
[ 8 ]  Chen J Y, Lim B, Lee E P, et al. Nano Today, 2009, 4: 81— 95
[ 9 ]  Tao A R, Habas S, Yang P D. Small, 2008, 4: 310—325
[ 10 ]  Ahmadi T S, Wang Z L, Ei-SayedM A, et al. Chem. Mater. , 1996, 8: 1161—1163
[ 11 ]  Petroski J M, Wang Z L, Ei-SayedM A, et al. J. Phys. Chem. B, 1998, 102: 3316—3320
[ 12 ]  于迎涛(Yu Y T) , 徐柏庆(Xu B Q) . 化学学报(Acta Chimica Sinica) , 2003, 61: 1758—1764
[ 13 ]  Henglein A, Ershov B G, Malow M. J. Phys. Chem. , 1995, 99: 14129—14136
[ 14 ]  于迎涛(Yu Y T) , 张钦辉( Zhang Q H) , 徐柏庆(Xu B Q) . 化学进展( Progress in Chemistry) , 2004, 16: 520—527
[ 15 ]  于迎涛(Yu Y T) , 徐柏庆(Xu B Q) . 高等学校化学学报( Chemical Journal of Chinese Universities ) , 2004, 25: 2384—2386
[ 16 ]  于迎涛(Yu Y T) , 徐柏庆(Xu B Q) . 科学通报(Chinese Science Bulletin) , 2003, 48: 1919—1924
[ 17 ]  Miyazaki A, Nakano Y. Langmuir, 2000, 16: 7109—7111
[ 18 ]  符小艺( Fu X Y) , 王远(Wang Y) , 吴念祖(Wu N Z)等. 化学学报(Acta Chimica Sinica) , 2002, 60: 1324—1330
[ 19 ]  Fu X Y, Wang Y, Wu N Z, et al. Langmuir, 2002, 18: 4619—4624
[ 20 ]  Lee H, Habas S E, Kweskin S, et al. Angew. Chem. Int. Ed. , 2006, 45: 7824—7828
[ 21 ]  Yang W, Wang X L, Yang F, et al. Adv. Mater. , 2008, 20: 2579—2587
[ 22 ]  Susut C, Nguyen T D, Chapman G B, et al. J. Clust. Sci. , 2007, 18: 773—780
[ 23 ]  Grass M E, Yue Y, Habas S E, et al. J. Phys. Chem. C, 2008, 112: 4797—4804
[ 24 ]  Liu Y G, Shi S L, Xue X Y, et al. App l. Phys. Lett. , 2008, 92: art. no. 203105
[ 25 ]  Han S B, Song Y J, Lee J M, et al. Electrochem. Commun. , 2008, 10: 1044—1047
[ 26 ]  Herricks T, Chen J Y, Xia YN. Nano Lett. , 2004, 4: 2367— 2371
[ 27 ]  Gugliotti L A, Feldheim D L, Eaton B E. Science, 2004, 304: 850—852
[ 28 ]  Gugliotti L A, Feldheim D L, Eaton B E. J. Am. Chem. Soc. , 2005, 127: 17814—17818
[ 29 ]  Zhong X H, Feng Y, Lieberwirth I, et al. Chem. Mater. , 2006, 18: 2468—2471
[ 30 ]  Fang Z, Zhang Y, Zhong X, et al. Nano Res. , 2008, 1: 249— 257
[ 31 ]  Wang C, Daimon H, Lee Y, et al. J. Am. Chem. Soc. , 2007, 129: 6974—6975
[ 32 ]  Tian N, Zhou Z Y, Sun S G. J. Phys. Chem. C, 2008, 112: 19801—19817
[ 33 ]  Tian N, Zhou Z Y, Sun S G, et al. Science, 2007, 316: 732— 735
[ 34 ]  Zhou Z Y, Tian N, Huang Z Z, et al. FaradayDiscuss. , 2008, 140: 81—92
[ 35 ]  Clavilier J, Armand D. J. Electroanal. Chem. , 1986, 199: 187—200
[ 36 ]  Furuya N, Koide S. Surf. Sci. , 1989, 220: 18—28
[ 37 ]  Lopez-Cudero A, Cuesta A, Gutierrez C. J. Electroanal. Chem. , 2005, 579: 1—12
[ 38 ]  Lopez-Cudero A, Cuesta A, Gutierrez C. J. Electroanal. Chem. , 2006, 586: 204—216
[ 39 ]  Tripkovic A V, Gojkovic S L, Popovic K D, et al. J. Serb. Chem. Soc. , 2006, 71: 1333—1343
[ 40 ]  Herrero E, Franaszczuk K, Wieckowski A. J. Phys. Chem. , 1994, 98: 5074—5083
[ 41 ]  Xia X H, Iwasita T, Ge F, et al. Electrochim. Acta, 1996, 41: 711—718
[ 42 ]  Sun S G, Lin Y, LiN H, et al. J. Electroanal. Chem. , 1994, 370: 273—280
[ 43 ]  Sun S G, Yang Y Y. J. Electroanal. Chem. , 1999, 467: 121—131
[ 44 ]  Solla-Gullon J, Vidal-Iglesias F J, Herrero E, et al. Electrochem. Commun. , 2006, 8: 189—194
[ 45 ]  Vidal-Iglesias F J, Solla-Gullon J, Rodriguez P, et al. Electrochem. Commun. , 2004, 6: 1080—1084
[ 46 ]  Solla-Gullon J, Vidal-Iglesias F J, Lopez-Cudero A, et al. Phys. Chem. Chem. Phys. , 2008, 10: 3689—3698
[ 47 ]  Solla-Gullon J, Vidal-Iglesias F J, Rodriguez P, et al. J. Phys. Chem. B, 2004, 108: 13573—13575
[ 48 ]  Rodriguez P, Herrero E, Solla-Gullon J, et al. Electrochim. Acta, 2005, 50: 4308—4317
[ 49 ]  Solla-Gullon J, Rodriguez P, Herrero E, et al. Phys. Chem. Chem. Phys. , 2008, 10: 1359—1373
[ 50 ]  Susut C, Chapman G B, Samjeske G, et al. Phys. Chem. Chem. Phys. , 2008, 10: 3712—3721
[ 51 ]  Balint I, Miyazaki A, Aika K. App l. Catal. B2Environ. , 2002, 37: 217—229
[ 52 ]  Balint I, Miyazaki A. Catal. Lett. , 2008, 122: 183—187
[ 53 ]  Bratlie K M, Lee H, Komvopoulos K, et al. Nano Lett. , 2007, 7: 3097—3101
[ 54 ]  Wen Y H, Fang H, Zhu Z Z, et al. Phys. Lett. A, 2009, 373: 272—276
[ 55 ]  Narayanan R, El-SayedM A. J. Phys. Chem. B, 2004, 108: 5726—5733
[ 56 ]  Narayanan R, El-SayedM A. J. Am. Chem. Soc. , 2004, 126: 7194—7195
[ 57 ]  Narayanan R, El-Sayed M A. Langmuir, 2005, 21: 2027—2033
[ 58 ]  Susut C, Nguyen T D, Chapman G B, et al. Electrochim. Acta, 2008, 53: 6135—6142

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[12] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[13] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[14] 景远聚, 康淳, 林延欣, 高杰, 王新波. MXene基单原子催化剂的制备及其在电催化中的应用[J]. 化学进展, 2022, 34(11): 2373-2385.
[15] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
阅读次数
全文


摘要

铂纳米晶的形状控制合成及应用*