English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 315-321 前一篇   后一篇

• 综述与评论 •

非线性光学晶体CdGeAs2点缺陷的研究*

朱崇强;杨春晖**;孙亮   

  1. (哈尔滨工业大学化工学院   哈尔滨 150001)
  • 收稿日期:2009-04-21 修回日期:2009-07-20 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 杨春晖 E-mail:yangchh@hit.edu.cn
  • 基金资助:

    国家自然科学基金;国家自然科学基金

the Research of Point Defects in CdGeAs2 Nonlinear Optical Crystals

Zhu Chongqiang; Yang Chunhui**; Sun Liang   

  1. (School of Chemical Engineering and Technology, Harbin Institute of Technology, Harbin 150001, China)
  • Received:2009-04-21 Revised:2009-07-20 Online:2010-03-24 Published:2010-03-18
  • Contact: Yang Chunhui E-mail:yangchh@hit.edu.cn
  • Supported by:

    National Natural Science Foundation of China;National Natural Science Foundation of China

CdGeAs2晶体是在红外频率转换应用中前景很广泛的非线性光学材料。点缺陷的存在引起了CdGeAs2晶体在5.5μm处的吸收,从而阻碍了其应用发展。本文综述了CdGeAs2晶体点缺陷的研究进展。利用光学吸收、光致发光、霍尔效应和电子顺磁共振等技术研究了CdGeAs2晶体的点缺陷;并利用原子模拟技术和密度泛函理论方法计算了CdGeAs2晶体的点缺陷;最后,展望了CdGeAs2晶体点缺陷今后重点开展的研究方向。

CdGeAs2 is a promising nonlinear optical material useful for frequency conversion applications in the infrared region. A major limitation to the development of CdGeAs2-based applications is the presence of point defect that can induce absorption band peaking near 5.5μm in the crystals. The progress of the point defects in CdGeAs2 is summarized in this paper. The point defects are studied by optical absorption, photoluminescence, Hall effect and electron paramagnetic resonance techniques. And the point defects are calculated by atomistic simulations and density functional theory methods. At last, the trends in the investigation on the point defects in CdGeAs2 are prospected.

Contents
1 Introduction
2 Crystal structure
3 Study on point defects by optical absorption
4 Study on point defects by photoluminescence
5 Study on point defects by Hall effect
6 Study on point defects by electron paramagnetic resonance
7 Study on point defects by theoretical calculation
8 Conclusion and prospects

中图分类号: 

()

[ 1 ]  Gentile A L, Stafsudd O M. MRSBulletin, 1974, 9 (2) : 105—116
[ 2 ]  Feigelson R S, Route R K. J. Cryst. Growth, 1980, 49: 261—273
[ 3 ]  Schunemann P G, Pollak T M. J. Cryst. Growth, 1997, 174: 272—277
[ 4 ]  Ruderman W, Zwieback I. MRS Symp. Proc. , 2000, 607: 361—372
[ 5 ]  Zawilski K T, Schunemann P G, Pollak TM. J. Cryst. Growth, 2008, 310: 1897—1903
[ 6 ]  LvW Q, Yang C H, Sun L, et al. Chin. J. Struct. Chem. , 2009, 28 (5) : 553—558
[ 7 ]  Schunemann P G. Proc. of SP IE, 2007, 6455: art. no. 64550
[ 8 ]  Feigelson R S, Route R K, Swarts H W. J. Cryst. Growth, 1975, 28: 138—144
[ 9 ]  Byer R L, Kildal H, Feigelson R S. App l. Phys. Lett. , 1971, 19 (7) : 237—240
[ 10 ]  Valeri-GilM L, Ricon C. Mater. Lett. , 1993, 17: 59—62
[ 11 ]  Hopkins F K. Laser FocusWorld, 1995, 31 (7) : 87—93
[ 12 ]  Zakel A, Blackshire J L, Schunemann P G, et al. App l. Optics, 2002, 41 (12) : 2299—2303
[ 13 ]  Vodopyanov K L, Knippels G M H, van derMeerA F G, et al. Opt. Commun. , 2002, 202: 205—208
[ 14 ]  Vodopyanov K L, Schunemann P G. Op t. Lett. , 1998, 23 (14) : 1096—1098
[ 15 ]  Feigelson R S. J. Cryst. Growth, 2006, 292: 179—187
[ 16 ]  Nagashio K, Watcharapasorn A, Zawilski K T, et al. J. Cryst. Growth, 2004, 269: 195—206
[ 17 ]  Bai L, Giles N C, Schunemann P G. J. App l. Phys. , 2005, 97 (2) : art. no. 023105
[ 18 ]  McCrae J E, Hengehold R L, Yeo Y K, et al. App l. Phys. Lett. , 1997, 70 (4) : 455—457
[ 19 ]  Iseler G W, Kildal H, Menyuk N. J. Electron. Mater. , 1978, 7 (6) : 737—755
[ 20 ]  Halliburton L E, Edwards G J, Schunemann P G, et al. J. App l. Phys. , 1995, 77 (1) : 435—437
[ 21 ]  Schunemann P G, Pollak T M. MRS Bulletin, 1998, 23: 23—27
[ 22 ]  Zwieback I, Perlov D, Maffetone J P, et al. App l. Phys. Lett. , 1998, 73 (15) : 2185—2187
[ 23 ]  Xu C, Bai L, Giles N C. J. Phys. : Condens. Matter, 2006, 18: 2741—2747
[ 24 ]  Pandey R, Ohmer M C, Gale J D. J. Phys. : Condens. Matter. , 1998, 10: 5525—5533
[ 25 ]  Paudel T R, Lambrecht W R L. Phys. Rev. B, 2008, 78 (8) : art. no. 085214
[ 26 ]  Blanco M A, Costales A, Luana V, et al. App l. Phys. Lett. , 2004, 85 (19) : 4376—4378
[ 27 ]  Hong K S, Speyer R F, Condrate R A. J. Phys. Chem. Solids, 1990, 51 (8) : 969—976
[ 28 ]  Abrahams S C, Bernstein J L. J. Chem. Phys. , 1974, 61 ( 3): 1140—1146
[ 29 ]  Shileika A. Surf. Sci. , 1973, 37: 730—747
[ 30 ]  Marenkin S F, Novotortsev V M, Palkina K K, et al. Inorg. Mater. , 2004, 40 (2) : 93—95
[ 31 ]  Boyd G D, Buehler E, Storz F G, et al. IEEE J. Quantum Elect. , 1972, 8 (4) : 419—426
[ 32 ]  Kildal H. Phys. Rev. B, 1974, 10 (12) : 5082—5087
[ 33 ]  Garces N Y, Giles N C, Halliburton L E, et al. J. App l. Phys. , 2003, 94 (12) : 7567—7570
[ 34 ]  Aufgang J B, Labrie D, Olson K, et al. Semicond. Sci. Technol. , 1997, 12: 1257—1264
[ 35 ]  Bai L, Garces N Y, Xu C, et al. Proc. of SPIE, 2004, 5337: 22—29
[ 36 ]  Schunemann P G, Setzler S D, Pollak T M, et al. J. Cryst. Growth, 2001, 225: 440—444
[ 37 ]  Bai L, Giles N C, Schunemann P G, et al. J. App l. Phys. , 2004, 95 (9) : 4840—4844
[ 38 ]  Ptak A J, Jain S, Stevens K T, et al. MRS Symp. Proc. , 2000, 607: 427—433
[ 39 ]  Bai L, Xu C, Giles N C, et al. J. App l. Phys. , 2006, 99 (1) : art. no. 013512
[ 40 ]  Bai L, Garces N Y, Yang N, et al. MRS Symp. Proc. , 2003, 744: 537—542
[ 41 ]  J iang X, Miao M S, Lambrecht W R L. Phys. Rev. B, 2005, 71 (20) : art. no. 205212
[ 42 ]  J iang X, Miao M S, Lambrecht W R L. Phys. Rev. B, 2006, 73 (19) : art. no. 193203
[ 43 ]  J iang X, Lambrecht W R L. Phys. Rev. B, 2004, 69 (3) : art. no. 035201
[ 44 ]  Rak Z, Mahanti S D, Mandal K C, et al. J. Phys. Chem. Solids, 2009, 70 (2) : 344—355
[ 45 ]  Rak Z, Mahanti S D, Mandal K C, et al. J. Phys. Condens. Mat. , 2009, 21 (1) : art. no. 015504
[ 46 ]  Fischer D W, Ohmer M C, McCrae J E. J. App l. Phys. , 1997, 81 (8) : 3579—3585
[ 47 ]  Bai L, Xu C, Nagashio K, et al. J. Phys. Condens. Matter, 2005, 17: 5687—5696

[1] 袁传军, 王猛, 李明, 包金鹏, 孙鹏瑞, 高荣轩. 基于碳点的发光材料在潜在手印显现中的应用[J]. 化学进展, 2022, 34(9): 2108-2120.
[2] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[3] 张业文, 杨青青, 周策峰, 李平, 陈润锋. 热激活延迟荧光材料的光物理行为及性能预测[J]. 化学进展, 2022, 34(10): 2146-2158.
[4] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[5] 郄佳, 李明, 刘利, 梁英华, 崔文权*. g-C3N4光催化材料的第一性原理研究[J]. 化学进展, 2016, 28(10): 1569-1577.
[6] 田志美, 刘汪丹, 程龙玖. 硫醇保护金团簇的实验和理论研究现状[J]. 化学进展, 2015, 27(12): 1743-1753.
[7] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.
[8] 孙亮, 杨春晖, 马天慧, 朱崇强. 非线性光学晶体LiBX2(B=Ga, In; X=S, Se, Te)的研究[J]. 化学进展, 2014, 26(0203): 293-302.
[9] 刘杰, 江漫, 梅咏梅, 吴占超*, 匡少平. 白光发光二极管用单一基质白光荧光粉[J]. 化学进展, 2013, 25(12): 2068-2079.
[10] 方云霞, 方晓明*, 张正国. 基于纳米ZnO的白光LED[J]. 化学进展, 2012, 24(08): 1477-1483.
[11] 张颖, 徐昕*. 新一代密度泛函方法XYG3[J]. 化学进展, 2012, 24(06): 1023-1037.
[12] 蒋鸿*. 带隙问题:第一性原理电子能带理论研究现状[J]. 化学进展, 2012, 24(06): 910-927.
[13] 王东琪, Wilfred F. van Gunsteren. 锕系计算化学进展[J]. 化学进展, 2011, 23(7): 1566-1581.
[14] 张其土, 张乐, 韩朋德, 陈雁, 杨浩, 王丽熙. 白光LED用光转换无机荧光粉[J]. 化学进展, 2011, 23(6): 1108-1122.
[15] 徐宇虹,尹鸽平,左朋建. 锂离子电池正极材料的第一性原理研究进展[J]. 化学进展, 2008, 20(11): 1827-1833.