English
新闻公告
More
化学进展 2010, Vol. 22 Issue (0203): 309-314 前一篇   后一篇

• 综述与评论 •

基于Eyring反应速率理论的溶液粘度模型

房升*   

  1. (浙江工商大学食品与生物工程学院    杭州310035)
  • 收稿日期:2009-04-15 修回日期:2009-06-18 出版日期:2010-03-24 发布日期:2010-03-18
  • 通讯作者: 房升 E-mail:fszjgsu@gmail.com

Viscosity Model for Mixtures Based on Eyring’s Absolute Reaction Theory

Fang Sheng*   

  1. (College of Food Science and Biotechnology Engineering, Zhejiang Gongshang University, Hangzhou 310035, China)
  • Received:2009-04-15 Revised:2009-06-18 Online:2010-03-24 Published:2010-03-18
  • Contact: Fang Sheng E-mail:fszjgsu@gmail.com

溶液粘度的关联、预测模型和理论研究,在化学工程和溶液热力学理论中占有重要的地位。本文对基于Eyring反应速率理论的溶液粘度模型研究进行了概述。在基于Eyring粘度方程的基础上,分别介绍了通过溶液相平衡关系、基团贡献法和过量函数模型来计算混合物粘度的方法。最后对这3方面进行展望,提出了进一步发展基于Eyring理论的粘度模型研究建议。

The correlation and prediction of viscosity for mixtures play an important role in the chemical engineering and solution thermodynamic studies. In this work, the development of viscosity models for mixtures based on Erying’s absolute reaction theory is reviewed. These models include prediction methods based on the relationship between the free energy of activation for viscous flow and the phase equilibrium properties for mixtures, the group contribution UNIFAC-VISCO and ASOG-VISCO methods. The correlation models based on the using of numerous Gibbs free energy approach to calculate free energy of activation for viscous flow in Erying’s viscosity equation are also introduced. An outlook on the future development of viscosity model based on Erying’s absolute reaction theory is given at last.

Contents
1 Introduction
2 Eyring’s theory of liquid viscosity
3 Model for calculating viscosities of liquid mixtures
3.1 Prediction of viscosities using phase equilibrium data
3.2 Group contribution methods for predicting kinematic viscosities
3.3 Correlation models based on Eyring’s theory and excess Gibbs free energy eqautions
4 Suggestions and future work
4.1 Improving the quantitative relationship between transport and thermodynamic properties
4.2 Extension of the group contribution methods
4.3 Improving the correlation methods with simplicity and accuracy

中图分类号: 

()

[ 1 ]  Poling B E, Prausnitz J M, O'Connell J P. Properties of Gases and Liquids. 5 th ed. NY: McGraw Hill, 2001
[ 2 ]  Monnery W D, Svrcek W Y, Mehrotra A K. Canadian Journal of Chemical Engineering, 1995, 73: 3—40
[ 3 ]  Mehrotra A K, Monnery W D, SvrcekW Y. Fluid Phase Equi libria, 1996, 117: 344—355
[ 4 ]  Eyring H. J. Chem. Phys. , 1936, 4: 283—291
[ 5 ]  Glasstone S, Laidler K J, Eyring H. The Theory of Rate Processes: The Kinetics of Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena. NY: McGraw-Hill, 1941
[ 6 ]  Rother M, Bittrich H J. Z. Phys. Chem. , 1967, 235:159—204
[ 7 ]  岑沛霖(Cen P L) , 朱自强( Zhu Z Z) . 浙江大学学报( Journal of Zhejiang University) , 1984, 18 (4) : 1—7
[ 8 ]  李学民(Li X M) , 陈钟秀(Chen Z X) . 化学工程(Chemical Engineering) , 1999, 27 (4) : 52—54
[ 9 ]  Wei I C, Rowley R L. Chem. Eng. Sci. , 1985, 40: 401—408
[ 10 ]  Cao W, Knudsen K, Fredenslund A, Rasmussen P. Ind. Eng.Chem. Res. , 1993, 32: 2088—2092
[ 11 ]  Chevalier J L, Petrino P, Gaston-Bonhomme Y. Chem. Eng.Sci. , 1988, 43: 1303—1309
[ 12 ]  Gaston-Bonhomme Y, Petrino P, Chevalier J L. Chem. Eng.Sci. , 1994, 49: 1799—1806
[ 13 ]  Rodriguez A, Canosa J, Domínguez A, Tojo J. Fluid Phase Equilibria, 2004, 216: 167—174
[ 14 ]  González B, Domínguez A, Tojo J. J. Chem. Eng. Data, 2006,51: 1076—1087
[ 15 ]  Yang C S, Lai H X, Liu Z G, Ma P S. J. Chem. Eng. Data,2006, 51: 1345—1351
[ 16 ]  González B, Domínguez A, Tojo J. J. Chem. Thermodynamics,2006, 38: 707—716
[ 17 ]  González B, Calvar N, Domínguez A, Tojo J. J. Chem. Thermodynamics, 2007, 39: 322—334
[ 18 ]  Bandrés I, Lahuerta C, Villares A, Martín S, Lafuente C. Int.J. Thermophys. , 2008, 29: 457—467
[ 19 ]  Tochigi K, Yoshino K, Rattan V K. Int. J. Thermophys. ,2005, 26: 413—419
[ 20 ]  Petrino P J, Gaston-Bonhomme Y, Chevalier J L. J. Chem.Eng. Data, 1996, 40: 136—140
[ 21 ]  González B, Calvar N, Gomez E, Domínguez A. J. Chem.Thermodyn. , 2007, 9: 1578—1588
[ 22 ]  Safi A, Nicolas C, Neau E, Chevalier J L. J. Chem. Eng. Data, 2008, 53: 444—448
[ 23 ]  Kijevcanin M L J, Kostic V Z, Radovic I R, Djordjevic B D,Serbanovic S P. Chemical Industry & Chemical Engineering Quarterly, 2008, 14: 223—226
[ 24 ]  Schrodt J T, Akel R M. J. Chem. Eng. Data, 1989, 34: 8—13
[ 25 ]  McAllister R A. A ICHE, 1960, 6: 427—431
[ 26 ]  Heric E L. J. Chem. Eng. Data, 1966, 11: 67—68
[ 27 ]  Martins R J, Márcio J E, Oswaldo E B. Ind. Eng. Chem.Res. , 2000, 39: 849—854
[ 28 ]  Fang S, Zhao C X, He C H, Liu J Q, Sun J H. J. Chem. Eng.Data, 2008, 53: 2718—2720
[ 29 ]  Martins R J, Márcio J E, CardosoM, Oswaldo E B. Ind. Eng.Chem. Res. , 2001, 40: 1271—1275
[ 30 ]  Novak L T. Ind. Eng. Chem. Res. , 2003, 42: 1824 —1826
[ 31 ]  Novak L T. Ind. Eng. Chem. Res. , 2004, 43: 2602—2604
[ 32 ]  Novak L T, Chen C C, Song Y H. Ind. Eng. Chem. Res. ,2004, 43: 6231—6237
[ 33 ]  Sadeghi R. J. Chem. Thermodyn. , 2005, 37: 445—448
[ 34 ]  Bosse D, Bart H J. Ind. Eng. Chem. Res. , 2005, 44: 8428—8435
[ 35 ]  牟天成(Mu T C) , Gmehling J. 化学进展( Progress in Chemistry) , 2008, 20 (10) : 1487—1494
[ 36 ]  Peters M, Greiner L, Leonhard K. A IChE J. , 2008, 54:2729—2734
[ 37 ]  周永祥( Zhou Y X) , 彭昌军( Peng C J ) , 黑恩成(Hei E C) ,刘洪来(Liu H L ) . 石油化工( Petrochemical Technology) ,2006, 35 (11) : 1063—1068
[ 38 ]  Geng Y F, Chen S L, Wang T F, Yu D H, Peng C J, Liu H L,Hu Y. J. Mol. Liq. , 2008, 143: 100—108
[ 39 ]  寇元(Kou Y) , 何玲(He L) . 化学进展( Progress in Chemistry) , 2008, 20 (1) : 5—10
[ 40 ]  Plaquevent J C, Levillain J, Guillen F, Malhiac C, Gaumont A C. Chem. Rev. , 2008, 108: 5035—5060
[ 41 ]  应安国(Ying A G) , 陈新志(Chen X Z) , 叶伟东(Ye W D) ,张定丰( Zhang D F) , 刘泺(Liu L) , 陈建辉(Chen J H) . 化学进展( Progress in Chemistry) , 2008, 20 (11) : 1642—1650
[ 42 ]  Dong Q, Muzny C D, Kazakov A, Diky V, Magee J W, Wide gren J A, Chirico R D, Marsh K N, FrenkelM. J. Chem. Eng.Data, 2007, 52: 1151—1159
[ 43 ]  Lee M J, Lin T K, Hwang S M. J. Chin. Inst. Chem. Eng. ,1998, 29: 73—83
[ 44 ]  Lee M J, Chiu J Y, Hwang S M, Lin H M. Ind. Eng. Chem.Res. , 1999, 38: 2867—2876
[ 45 ]  Lee L S, Lee Y S. Fluid Phase Equilibria, 2001, 181: 47—58
[ 46 ]  Lei Q F, Hou Y C, Lin R S. Fluid Phase Equilibria. , 1999,140: 221—231
[ 47 ]  Lei Q F, Hou Y C. Fluid Phase Equilibria. , 1999, 154: 153—163
[ 48 ]  Ricardo M S, Fernando G S, Otilio H G. A IChE J. , 2003, 49:799—804
[ 49 ]  Prausnitz J M, Lichtenthaler R N, De Azevedo E G. Molecular Thermodynamics of Fluid-Phase Equilibria. 3 rd ed. NJ: Prentice-Hall, 1998
[ 50 ]  Gmehling J, Lohmann J, Jakob A, Li J D, Joh R. Ind. Eng.Chem. Res. , 1998, 37: 4876—4882

[1] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[2] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[3] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[4] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[5] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[6] 饶林峰. 热力学和光谱学方法在锕系元素络合化学研究中的应用[J]. 化学进展, 2011, 23(7): 1295-1307.
[7] 姜俊颖 黄在银 米艳 李艳芬 袁爱群. 纳米材料热力学的研究现状及其展望[J]. 化学进展, 2010, 22(06): 1058-1067.
[8] 王艳 陶占良 陈军. 具有18电子结构的镁基过渡金属氢化物* [J]. 化学进展, 2010, 22(01): 234-240.
[9] 银建中 周丹 王爱琴. 超临界CO2微乳/反胶束体系热力学行为与应用*[J]. 化学进展, 2009, 21(12): 2505-2514.
[10] 方占召 康向东 王平. 硼氢化锂储氢材料研究* [J]. 化学进展, 2009, 21(10): 2212-2218.
[11] 滕少香,盛国平,刘贤伟,王曙光,俞汉青. 芳香族硝基化合物的微生物降解[J]. 化学进展, 2009, 21(0203): 534-539.
[12] 牟天成,Jürgen Gmehling. 真实溶剂似导体屏蔽模型(COSMO-RS)*[J]. 化学进展, 2008, 20(10): 1487-1494.
[13] 银建中,马晓荣,张宪阵,王爱琴. CO2膨胀液体热力学特性及在化学反应中的应用*[J]. 化学进展, 2008, 20(09): 1251-1262.
[14] 王振亚,郝立庆,张为俊. 二次有机气溶胶的气体/粒子分配理论*[J]. 化学进展, 2007, 19(01): 93-100.
[15] 宋海华,宋静. 萃取溶剂选择的计算机辅助分子设计中的数学方法[J]. 化学进展, 2006, 18(09): 1188-1193.