English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 51-57 前一篇   后一篇

• 综述与评论 •

含钒无机有机杂化材料的合成、结构与性质

刘金丽;周荫庄*   

  1. (首都师范大学化学系  北京100048)
  • 收稿日期:2009-02-16 修回日期:2009-04-06 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 周荫庄 E-mail:zhouyz7813@x263.net
  • 基金资助:

    北京市教育委员会科技发展计划面上项目

Synthesis, Structures and Properties of Inorganic-Organic Hybrid Polyoxovanadate

Liu Jinli;  Zhou Yinzhuang*   

  1. (Department of Chemistry, Capital Normal University, Beijing 100048, China)
  • Received:2009-02-16 Revised:2009-04-06 Online:2010-01-24 Published:2010-01-07
  • Contact: Zhou Yinzhuang E-mail:zhouyz7813@x263.net
  • Supported by:

    Project Supported by Scientific Research Common Program of Beijing Municipal Commission of Education

含钒无机有机杂化材料的结构复杂多样,在吸附、氧化还原、电化学、催化、光学、磁学以及多孔、手性材料研究等方面应用前景广阔,引起人们广泛关注。本文综述了含钒无机有机杂化材料研究的最新进展,介绍了合成含钒无机有机杂化材料的主要方法,按照有机组分与无机骨架作用的方式分类总结了含钒无机有机杂化材料的结构,介绍了其在离子交换、电化学、磁学、光学、催化等方面的应用,并展望了该类材料的研究前景和意义。

Inorganic-organic hybrid polyoxovanadate have various structures, and considerable efforts have been devoted to the research of these compounds due to their wide potential applications to material science as adsorption, redox, electronic, catalytic, luminescent, magnetic, porous, and chiral materials. The research progress of inorganic-organic hybrid polyoxovanadate are reviewed in this paper. The synthesis methods of these complexes are introduced. The structures are summarized according to the mode of organic components and inorganic framework. The potential applications in ion exchange, electrochemistry, magnetism, luminescent material and catalyst are commented. The research of these materials are also prospected.

Contents
1 The synthesis of inorganic-organic hybrid polyoxovanadate
2 The structures of inorganic-organic hybrid polyoxovanadate
2.1 Organic components as charge compensating cations, template agents, or structure directing agents
2.2 Organic components as ligands coordinated to metal centers to decorate/connect the framework
2.3 Phosphonic acids and carboxylic acids as ligands coordinated to metal centers to form hybrid framework
3 Properties of inorganic-organic hybrid polyoxovanadate
4 The outlook of inorganic-organic hybrid polyoxovanadate

中图分类号: 

()

[ 1 ]  Laye R H, Wei Q, Mason P V, et al. J. Am. Chem. Soc. ,2006, 128: 9020—9021
[ 2 ]  Ushak S, Spodine E, Fur E L, et al. Inorg. Chem. , 2006, 45:5393—5398
[ 3 ]  Glaser T, Theil H, Liratzis I, et al. Inorg. Chem. , 2006, 45:4889—4891
[ 4 ]  Dong B X, Peng J, Gomez-Garcia C J, et al. Inorg. Chem. ,2007, 46: 5933—5941
[ 5 ]  Zhang XM, Wu H S, Chen XM, et al. J. Solid State Chem. ,2003, 176: 69—75
[ 6 ]  Koene B E, TaylorN J, Nazar L F, et al. Angew. Chem. Int.Ed. , 1999, 38: 2888—2891
[ 7 ]  Zhang Y P, O’Connor C J, Zubieta J, et al. Angew. Chem.Int. Ed. Engl. , 1996, 35: 989—991
[ 8 ]  Zheng L M, Zhao J S, Lii K H, et al. Dalton Trans. , 1999,939—943
[ 9 ]  Law T S C, Williams I D. Chem. Mater. , 2000, 12:2070—2072
[ 10 ]  Zhang XM, TongM L, Chen X M. Chem. Commun. , 2000,1817—1818
[ 11 ]  Liu C M, Gao S, Kou H Z, et al. Chem. Commun. , 2001,1670—1671
[ 12 ]  Liu C M, Gao S, Hu H M, et al. Chem. Commun. , 2001,1636—1637
[ 13 ]  Bircsak Z, Harrison W T A. Inorg. Chem. , 1998, 37:3204—3208
[ 14 ]  Duan C Y, Tian Y P, Lu ZL, et al. Inorg. Chem. , 1995, 34:1—2
[ 15 ]  Hagrman P J, Zubieta J. Inorg. Chem. , 2000, 39: 3252—3260
[ 16 ]  JoniakovòD, Gyepes R, Rakovsk? E, et al. Polyhedron, 2006,25: 2491—2502
[ 17 ]  OuelletteW, Koo B K, Zubieta J, et al. Dalton Trans. , 2004,1527—1538
[ 18 ]  Lin B Z, Liu S X. Polyhedron, 2000, 19: 2521—2527
[ 19 ]  Saìudo E C, Ribasb J R, Winpenny R E P. New J. Chem. ,2007, 31: 1421—1423
[ 20 ]  Saìudo E C, Smith A A, Winpenny R E P. Dalton Trans. ,2006, 1981—1987
[ 21 ]  KhanM I, Lee Y S, O′Connor C J, et al. J. Am. Chem. Soc. ,1994, 116 (10) : 4525—4526
[ 22 ]  Zhou Y Z, Qiao H P. Inorg. Chem. Commun. , 2007,1318—1320
[ 23 ]  Soghomonian V, Chen Q, Haushalter R C, et al. Angew.Chem. Int. Ed. Engl. , 1995, 34: 223—226
[ 24 ]  Zhang XM, Hou J J, ZhangW X, et al. Inorg. Chem. , 2006,45: 8120—8125
[ 25 ]  Xu Y, Zhou G P, Zhu D R. Inorg. Chem. , 2008, 47:567—571
[ 26 ]  WelkM E, Stern C L, NorquistA J, et al. Cryst. Growth Des. ,2007, 7 (5) : 956—961
[ 27 ]  Finn R C, Sims J, O’Connor C J, et al. Dalton Trans. , 2002,159—163
[ 28 ]  Zhang C D, Liu S X, Xie L H, et al. J. Mol. Struct. , 2005,753: 40—44
[ 29 ]  Wang CM, Chuang Y L, Chuang S T, et al. J. Solid State Chem. , 2004, 177 (7) : 2305—2310
[ 30 ]  Che J X, Wei C X, Zhang Z C, et al. Inorg. Chim. Acta,2006, 359: 3396—3404
[ 31 ]  刘欣(Liu X) . 首都师范大学硕士论文(Master Dissertation of CapitalNormal University) , 2008
[ 32 ]  乔海平(Qiao H P) . 首都师范大学硕士论文(Master Dissertation of Capital Normal University) , 2007
[ 33 ]  FuM L, Guo G C, Wu A Q, et al. Eur. J. Inorg. Chem. ,2005: 3104—3108
[ 34 ]  Hagrman P J, Zubieta J. Inorg. Chem. , 2001, 40: 2800—2809
[ 35 ]  YangW B, Lu C Z. Inorg. Chem. , 2002, 41: 5638—5640
[ 36 ]  Zhou Y Z, Liu J L. Inorg. Chem. Commun. , 2009, 12: 243—245
[ 37 ]  Yan B B, Maggard P A. Inorg. Chem. , 2007, 46: 6640—6646
[ 38 ]  Sun C Y, Wang E B, Xiao D R, et al. J. Mol. Struct. , 2007,840: 53—58
[ 39 ]  Qu X S, Xu L, Gao G G, et al. Inorg. Chem. , 2007, 46:4775—4777
[ 40 ]  Yan B B, Luo J H, Maggard P A, et al. Inorg. Chem. , 2006,45: 5109—5118
[ 41 ]  Yang S H, Li G B, Tian S J, et al. Eur. J. Inorg. Chem. ,2006: 2850—2854
[ 42 ]  Law T S C, Sung H H Y, Williams I D. Inorg. Chem. Commun. , 2000, 3: 420—423
[ 43 ]  Vougo-Zanda M, Anokhina E V, Jacobson A J, et al. Inorg.Chem. , 2008, 47: 4746—4751
[ 44 ]  Barthelet K, Marrot J, Riou D, et al. Angew. Chem. Int. Ed. ,2002, 41: 282—284
[ 45 ]  Cheng C Y, Fu S J, Lin K J, et al. Angew. Chem. Int. Ed. ,2003, 42: 1937—1940
[ 46 ]  Yucesan G, Golub V, Zubieta J, et al. Dalton Trans. , 2005,2241—2251
[ 47 ]  Xiao D R, Xu Y, Wang E B, et al. Eur. J. Inorg. Chem. ,2004, 1385—1388
[ 48 ]  Lv J, Li Y G, Wang E B, et al. Inorg. Chim. Acta, 2004,357: 1193—1197
[ 49 ]  冯守华( Feng S H) ,徐如人(Xu R R) . 化学进展( Progress in Chemistry) , 2000, 12: 445—457
[ 50 ]  Fernández T L, AntunesO A C, ScarpelliniM, et al. J. Inorg.Biochem. , 2009, 103 (4) : 474—479

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[11] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[12] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[13] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.