English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 248-254 前一篇   

• 综述与评论 •

沸石吸附储氢研究进展

杜晓明1;李静2;吴尔冬2*   

  1. (1.沈阳理工大学材料科学与工程学院 沈阳  110159; 2.沈阳材料科学国家联合实验室 中国科学院金属所 沈阳  110016)
  • 收稿日期:2009-03-02 修回日期:2009-04-20 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 吴尔冬 E-mail:ewu@imr.ac.cn

The Study of Adsorption of Hydrogen on Zeolites

Du Xiaoming1; Li Jing2; Wu Erdong2*   

  1. (1. School of Materials Science and Engineering, Shenyang Ligong University, Shenyang 110159, China;
    2. Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 , China)
  • Received:2009-03-02 Revised:2009-04-20 Online:2010-01-24 Published:2010-01-07
  • Contact: Wu Erdong E-mail:ewu@imr.ac.cn

沸石类微孔材料作为储氢介质的研究已成为近年来储氢领域中备受关注的热点问题,但对于其储氢机理、储氢容量及其影响因素的文献报道不尽一致。本文从吸附实验测定和理论计算模拟方面综述了各种结构类型沸石的吸附储氢的研究结果。重点分析了沸石的结构类型、硅铝比、阳离子类型及吸附实验条件差异对储氢量的影响,并讨论了超临界吸附理论模型的发展状况,最后探讨了沸石作为储氢材料的可行性和发展方向。

关键词: 沸石, 储氢, 吸附

Microporous zeolites as media for hydrogen storage have been paid more and more attention in recent years. However, the reports on hydrogen adsorption mechanism, hydrogen storage capacity of the materials and its relevant factors are quite controversial. In this review, the results of adsorption experiments as well as theoretical modeling for hydrogen storage of various structure-type zeolites are briefly reviewed. The influence of many factors on hydrogen storage capacity is emphatically analyzed, such as the zeolitic structures, Si/Al ratio, type of cations in zeolites and the difference of adsorption experimental conditions, etc. And the progress of supercritical adsorption theory models also is discussed. Finally, the possibility and the research trend of zeolites for hydrogen storage are discussed.

Contents
1 Introduction
2 Zeolite structures
3 Supercritical adsorption of hydrogen on zeolites
3.1 Progress of experimental study
3.2 Progress of theoretical modeling
4 Encapsulation of hydrogen in zeolites
5 Conclusion

中图分类号: 

()

[ 1 ]  ZüttelA, Sudan P, Maurona P, et al. Int. J. Hydrogen Energy,2002, 27: 203—212
[ 2 ]  周亚平( Zhou Y P) , 冯奎( Feng K) , 周理( Zhou L)等. 化学进展( Progress in Chemistry) , 2003, 15 (5) : 345—350
[ 3 ]  Radhakrishnan R, Gubbins K E, Watanabe A, et al. J. Chem.Phys. , 1999, 111: 9058—9067
[ 4 ]  周理( Zhou L) , 周亚平( Zhou Y P) . 中国科学B辑( Science in China, SeriesB) , 1996, 26 (5) : 473—480
[ 5 ]  Darkrim F L, Malbrunot P, Tartaglia G P. Int. J. Hydrogen Energy, 2002, 27: 193—202
[ 6 ]  Chambers A, Park C, Baker R T K, et al. J. Phys. Chem. B,1998, 102: 4253—4256
[ 7 ]  Weitkamp J, Fritz M, Ernst S. Int. J. Hydrogen Energy, 1995,20: 967—970
[ 8 ]  Nijkamp M G, Raaymakers J EM J, van Dillen A J, et al. App l. Phys. A: Materials Science and Processing, 2001, 72:619—623
[ 9 ]  Langmi H W, Book D, Harris I R, et al. J. Alloys Comp. ,2003, 356/357: 710—715
[ 10 ]  Sheppard A D, Maitland C F, Buckley C E. J. Alloys Comp. ,2005, 404/406: 405—408
[ 11 ]  WardM D. Science, 2003, 300: 1104—1105
[ 12 ]  Rosi L N, Eckert J, Yaghi O M, et al. Science, 2003, 300:1127—1129
[ 13 ]  Wu H, Zhou W, Taner Y. J. Am. Chem. Soc. , 2007, 129:5314—5315
[ 14 ]  Basmadjian D. Can. J. Chem. , 1960, 38: 141—156
[ 15 ]  Kotoh K, Nishikawa T, Kashio Y. J. Nucl. Sci. Technol. ,2002, 39: 435—441
[ 16 ]  Skazyvaev V E, Khovshchev S S, Zhdanov S P. Russ. Chem.Bull. , 1975, 24: 1143—1146
[ 17 ]  Kazansky V B, Borovkov V Y, Serich A, Karge H G. Microporous Mesoporous Mater. , 1998, 22: 251—259
[ 18 ]  Kazansky V B. J. Mol. Catal. A: Chem. , 1999, 141: 83—94
[ 19 ]  Jhung S H, Yoon J W, Lee J S, et al. Chem. Eur. J. , 2007,13: 6502—6507
[ 20 ]  Li Y W, Yang R T. J. Phys. Chem. B, 2006, 110:17175—17181
[ 21 ]  Bae D H, Park H, Tai N K, et al. J. Phys. Chem. Solids,2008, 69: 1152—1154
[ 22 ]  Makarova M A, Zholobenko V L, Dwyer J, et al. J. Chem.Soc. Faraday Trans. , 1994, 90: 1047—1054
[ 23 ]  Jhung S H, Yoon J W, Kim H K, et al. Bull. Korean Chem.Soc. , 2005, 26: 1075—1078
[ 24 ]  Levin M A, Fomkin A A, Serp inskii V V, et al. Russ. Chem.Bull. , 1986, 35: 2594—2594
[ 25 ]  Levin M A, Gorbunov M B, Serp inskiiV V, et al. Russ. Chem.Bull. , 1986, 35: 2406—2408
[ 26 ]  Golden T C, Sircar S. J. Colloid Interface Sci. , 1994, 162:182—188
[ 27 ]  Langmi H W, Book D, Harris I R, et al. J. Alloys Comp. ,2005, 404 /406: 637—642
[ 28 ]  Kayiran S B, Darkrim F L. Surf. Interface Anal. , 2002, 34:100—104
[ 29 ]  Du X M, Wu E D. Chin. J. Chem. Phys. , 2006, 19 ( 5 ) :457—462
[ 30 ]  杜晓明(Du XM) , 吴尔冬(Wu E D) . 2006年材料科学与工程新进展( The New Progress on Materials and Engineering 2006) , 北京(Beijing) : 化学工业出版社(Chemical Industrial Press) , 2006. 541—546
[ 31 ]  杜晓明(Du XM) . 中国科学院金属研究所博士论文(Doctoral Dissertation of Institute of Metal Research, Chinese Academy of Sciences) , 2007
[ 32 ]  Li J, Wu E D. J. Supercrit. Fluids, 2009, 49: 196—202
[ 33 ]  Li J, Wu E D. Int. J. Hydrogen Energy, 2009, 34:5458—5465
[ 34 ]  Stephanie-Victoire F, Goulay A M, de Lara E C. Langmuir,1998, 14: 7255—7259
[ 35 ]  van der Berg A W C, Bromley S T, Jansen J C, et al. Microporous Mesoporous Mater. , 2005, 87: 235—242
[ 36 ]  Zhan L, Li K X, Ling L C, et al. J. Supercrit. Fluid, 2004,28: 37—45
[ 37 ]  杜晓明(Du XM) , 吴尔冬(Wu E D) . 物理化学学报(Acta Phys. Chim. Sin. ) , 2007, 23 (6) : 813—819
[ 38 ]  杜晓明(Du XM) , 吴尔冬(Wu E D) . 物理化学学报(Acta Phys. Chim. Sin. ) , 2009, 25 (3) : 549—554
[ 39 ]  Darkrim F, Aoufi A, Malbrunot P, et al. J. Chem. Phys. ,2000, 112: 5991—5999
[ 40 ]  vander Berg AW C, Bromley S T, Jansen J C, et al. J. Chem.Phys. , 2004, 120: 10285—10289
[ 41 ]  vander Berg AW C, Bromley S T, Jansen J C, et al. J. Chem.Phys. , 2004, 121: 10209—10216
[ 42 ]  vander Berg AW C, Bromley S T, Jansen J C. Microporous Mesoporous Mater. , 2005, 78: 63—71
[ 43 ]  Vitillo J G, Ricchiardi G, Zecchina A, et al. Phys. Chem.Chem. Phys. , 2005, 7: 3948—3954
[ 44 ]  Cook G A. Argon, Helium and the Rare Gases. NY: Interscience, 1961, 228—230
[ 45 ]  Fraenkel B D. The Potential of Zeolite Molecular Sieves as Hydrogen Storage Media. Alternative Energy Sources. Washington DC: Hemisphere Publishing Corporation, 1977, 3771—3802
[ 46 ]  Franekel B D, Shabtai J. J. Am. Chem. Soc. , 1977, 14:7074—7076
[ 47 ]  Franekel B D. J. Chem. Soc. Faraday Trans. 1, 1981, 77:2029—2039
[ 48 ]  Franekel B D. J. Chem. Soc. Faraday Trans. 1, 1981, 77:2041—2052

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[3] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[6] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[7] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[8] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[9] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[10] 康淳, 林延欣, 景远聚, 王新波. MXenes的制备及其在环境领域的应用[J]. 化学进展, 2022, 34(10): 2239-2253.
[11] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[12] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[15] 王玉冰, 陈杰, 延卫, 崔建文. 共轭微孔聚合物的制备与应用[J]. 化学进展, 2021, 33(5): 838-854.
阅读次数
全文


摘要

沸石吸附储氢研究进展