English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 234-240 前一篇   后一篇

• 综述与评论 •

具有18电子结构的镁基过渡金属氢化物*

王艳;陶占良;陈军**   

  1. (南开大学新能源材料化学研究所 教育部高效储能工程研究中心 天津 300071)
  • 收稿日期:2009-02-02 修回日期:2009-05-05 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 陈军 E-mail:chenabc@nankai.edu.cn
  • 基金资助:

    50771056;国家自然科学基金

Mg-Based Transition-Metal Complex Hydrides with 18-Electronic Structure

Wang Yan; Tao Zhanliang; Chen Jun**   

  1. (Institute of New Energy Materials Chemistry, Engineering Research Center of Energy Storage and Conversion (Ministry of Education), Chemistry College, Nankai University, Tianjin 300071, China)
  • Received:2009-02-02 Revised:2009-05-05 Online:2010-01-24 Published:2010-01-07
  • Contact: Chen Jun E-mail:chenabc@nankai.edu.cn

本文综述了近年来备受关注的具有18电子结构和高储氢容量的镁基过渡金属氢化物Mg2NiH4、Mg2CoH5和Mg2FeH6的研究进展,特别从材料组成、制备工艺、热力学及动力学性能等方面进行了综合评述。提出了该类金属氢化物在实际应用中存在的一些问题,如吸/放氢温度均较高,反应动力学性能较差,对于Mg2CoH5和Mg2FeH6的制备较困难,且可逆性不好。最后展望了对于具有18电子结构的镁基过渡金属氢化物在今后研究中的发展方向。

The recent progress of research and development on Mg-based transition-metal complex hydrides Mg2NiH4, Mg2CoH5 and Mg2FeH6 with 18-electrons structure and high hydrogen storage capacities is reviewed. In particular, the composition, synthesis technology, thermodynamic and kinetic properties of Mg2NiH4, Mg2CoH5 and Mg2FeH6 have been addressed. The pending problems on Mg2NiH4, Mg2CoH5 and Mg2FeH6 for practical applications are stated in the aspects of the high-temperature absorption/desorption for hydrogen, the slow reaction kinetics, the difficult preparation of Mg2CoH5 and Mg2FeH6, and the poor reversibility. Finally, the development trend on Mg-based transition-metal complex hydrides Mg2NiH4, Mg2CoH5 and Mg2FeH6 in the future is prospected.

Contents
1 Introduction
2 The Mg-Ni-H system
3 The Mg-Co-H system
4 The Mg-Fe-H system
5 Conclusion and prospects

中图分类号: 

()

[ 1 ]  刘淑生(Liu S S) , 孙立贤( Sun L X) , 徐芬(Xu F) . 化学进展( Progress in Chemistry) ,  2008, 20 (2 /3) : 280—287
[ 2 ]  许炜(XuW) , 陶占良( Tao Z L) , 陈军(Chen J ) . 化学进展( Progress in Chemistry) , 2006, 18 (2 /3) : 200—210
[ 3 ]  周亚平( Zhou Y P) , 冯奎( Feng K) , 孙艳( Sun Y)等. 化学进展( Progress in Chemistry) , 2003, 15 (5) : 345—350
[ 4 ]  Zhang J, Zhou D W, He L P, et al. J. Phys. Chem. Solids,2009, 70: 32—39
[ 5 ]  Jasen P V, González, E A, Brizuela G, et al. Int. J. Hydrogen Energy, 2007, 32 (18) : 4943—4948
[ 6 ]  Zolliker P, Yvon K, Fischer P, et al. Inorg. Chem. , 1985, 24(24) : 4177—4180
[ 7 ]  Didisheim J J, Zolliker P, Yvon K, et al. Inorg. Chem. , 1984,23 (13) : 1953—1957
[ 8 ]  Zaluska A, Zaluski L, Strom2Olsen J O. J. Alloys Compd. ,1999, 289 (1 /2) : 197—206
[ 9 ]  Gennari F C, Castro F J. J. Alloys Compd. , 2005, 396 (1 /2) :182—192
[ 10 ]  李松林(Li S L) , 刘燚(Liu Y) , 崔建民(Cui JM)等. 中南大学学报( Journal of Central South University) , 2008, 39 ( 1 ) :1—6
[ 11 ]  Yvon K. Encyclopedia of Materials: Science and Technology.Oxford: Elsevier Ltd. , 2004. 1
[ 12 ]  Buchner H. In Proceedings of the 2nd World Hydrogen Energy Conference ( eds. Veziroglu TN, SeifritzW) . Switzerland: Zurich, 1978, 4: 1749
[ 13 ]  支春雷( Zhi C L) , 宋洪昌( Song H C) , 李凤生(Li F S)等.化工学报( Journal of Chemical Industry and Engineering (China) ) , 2008, 58 (11) : 2793—2797
[ 14 ]  刘磊力(Liu L L) , 李凤生(Li F S) , 支春雷( Zhi C L)等. 高等学校化学学报(Chemical Journal of Chinese Universities) ,2007, 28 (8) : 1420—1423
[ 15 ]  Ell J, Georg A, Arntzen M, et al. Sol. Energy Mater. Sol.Cells, 2007, 91 (6) : 503—517
[ 16 ]  Yvon K, Schefer J, Stucki F, Inorg. Chem. , 1981, 20: 2776—2778
[ 17 ]  Zolliker P, Yvon K, Jorgensen J D, et al. Inorg. Chem. , 1986,25: 3590—3593
[ 18 ]  Léon A, Knystautas E J, Huot J, et al. J. Alloys Compd. ,2002, 345: 158—166
[ 19 ]  张玲( Zhang L) , 彭述明( Peng SM) , 晏洪波( Yan H B)等.材料科学与工程学报( Journal of Materials Science and Engineering) , 2004, 22 (4) : 534—538
[ 20 ]  Orimo S, Fujii H. App l. Phys. A, 2001, 72: 167—186
[ 21 ]  Khrussanova M, Bobet J L, Terzieva M, et al. J. Alloys Compd. , 2000, 307: 283—289
[ 22 ]  Zaluski L, Zaluska A, Tessier P, et al. J. Alloys Compd. ,1995, 217 (2) : 295—300
[ 23 ]  Lee SM, Perng T P. J. Alloys Compd. , 1999, 291 ( 1 /2 ) :254—261
[ 24 ]  Zaluski L, Zaluska A, Tessier P, et al. Mater. Sci. Forum,1996, 225 /227: 853—858
[ 25 ]  周广有( Zhou G Y) , 郑时有( Zhen S Y) , 方方( Fang F)等.化学学报(Acta Chimica Sinica) , 2008, 66 (9) : 1037—1041
[ 26 ]  Reilly J J, Wiswall R H. Inorg. Chem. , 1968, 7: 2254—2256
[ 27 ]  Froes F H, Suryanarayana C, Russell K, Mater. Sci. Eng. A,1995, 193 /193: 612—623
[ 28 ]  Sakintuna B, Lamari-Darkrim F, HirscherM. Int. J. Hydrogen Energy, 2007, 32 (9) : 1121—1140
[ 29 ]  Orimo S, Fujii H. Intermetallics, 1998, 6 (3) : 185—192
[ 30 ]  Kirchheim R, Mütschele T, Kieninger W, et al. Mat. Sci.Eng. , 1988, 99 (1 /2) : 457—462
[ 31 ]  Tomohiro A, Katsushi S, Itoko S. J. Electrochem. Soc. , 2003,150 (9) : 450—454
[ 32 ]  Zolliker P, Yvon K, Fischer P, et al. Inorg. Chem. , 1985, 24:4177—4180
[ 33 ]  Ivanov E Y, Konstanchuk I G, Stepanov A A, et al. Inorg.Chem. , 1989, 28 (3) : 613—615
[ 34 ]  Selvam P, Yvon K. Int. J. Hydrogen Energy, 1991, 16 ( 9 ) :615—617
[ 35 ]  ˇ Cerny’R, Bonhomme F, Yvon K, et al. J. Alloys Compd. ,1992, 187: 233—241
[ 36 ]  Huot J, Hayakawa H, Akiba E. J. Alloys Compd. , 1997, 248:164—167
[ 37 ]  Fernández I G, Meyer G O, Gennari F C. J. Alloys Compd. ,2007, 446: 106—109
[ 38 ]  Shao H Y, Xu H, Wang Y, et al. J. Solid State Chem. , 2004,177: 3626—3632
[ 39 ]  Chen J, Takeshita H T, Chartouni D, et al. J. Mater. Sci. ,2001, 36: 5829—5832
[ 40 ]  Fernández I G, Meyer G O, Gennari F C. J. Alloys Compd. ,2008, 464: 111—117
[ 41 ]  阎杰( Yan J ) . 无机化学( Journal of Inorganic Chemistry) ,1987, 3 (4) : 76—86
[ 42 ]  Varin R A, Li S H, Wronski Z, et al. J. Alloys Compd. , 2005,390 (1 /2) : 282—296
[ 43 ]  Hout J, Boily S, Akibs E. J. Alloys Compd. , 1998, 280 ( 1 /2) : 306—309
[ 44 ]  Gennari F C, Castro F J. J. Alloys Compd. , 2002, 339 (1 /2) :261—267
[ 45 ]  Li S H, Varin R A, Morozova O, et al. J. Alloys Compd. ,2004, 384 (1 /2) : 231—248
[ 46 ]  Varin R A, Li S H, Wronski Z, et al. J. Alloys Compd. , 2005,390 (1 /2) : 282—296
[ 47 ]  Raman S S S, Davidson D J, Bobet J L, et al. J. Alloys Compd. , 2002, 333: 282—290
[ 48 ]  Castro F J, Gennari F C. J. Alloys Compd. , 2004, 375 (1 /2) :292—296
[ 49 ]  Shang C X, Bououdina M, Guo Z X. J. Alloys Compd. , 2003,356: 626—629
[ 50 ]  Herrich M, Lsmail N. Mater. Sci. Eng. , B, 2004, 108 (1 /2) :28—32
[ 51 ]  Puszkiel J A, Larochette P A, Gennari F C. Int. J. Hydrogen Energy, 2008, 33 (13) : 3555—3560
[ 52 ]  Selvam P, Yvon K. Int. J. Hydrogen Energy, 1991, 16 ( 9 ) :615—617
[ 53 ]  Puszkiel J A, Arneodo Larochette P, Gennari F C. J. Alloys Compd. , 2008, 463 (1 /2) : 134—142
[ 54 ]  Puszkiel J A, Arneodo Larochette P, Gennari F C. J. Power Sources, 2009, 186: 185—193
[ 55 ]  Stampfer J F, Holley C E, Suttle J F, J. Am. Chem. Soc. ,1960, 82 (14) : 3504—3508
[ 56 ]  Bogdanovic′B, ReiserA, Schlichte K, et al. J. Alloys Compd. ,2002, 345 (1 /2) : 77—89
[ 57 ]  Fromm E. Kinetics of Metal-Gas Interactions at Low Temperatures: Hydriding, Oxidation, Poisoning. New York: Springer-Verlag, 1998

[1] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[2] 彭诚, 吴乐云, 徐志建, 朱维良. 副本交换分子动力学[J]. 化学进展, 2022, 34(2): 384-396.
[3] 丁朝, 杨维结, 霍开富, Leon Shaw. LiBH4储氢热力学和动力学调控[J]. 化学进展, 2021, 33(9): 1586-1597.
[4] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[5] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[6] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[7] 顾婷婷, 顾坚, 张喻, 任华. 金属硼氢化物基固态储氢体系[J]. 化学进展, 2020, 32(5): 665-686.
[8] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[9] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[10] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[11] 李超, 范美强, 陈海潮, 陈达, 田光磊, 舒康颖. Li-Mg-N-H体系储氢材料的热力学和动力学调控[J]. 化学进展, 2016, 28(12): 1788-1797.
[12] 刘新, 吴川, 吴锋, 白莹. 轻金属配位氢化物储氢体系[J]. 化学进展, 2015, 27(9): 1167-1181.
[13] 王霄, 许吉英, 陈义. 生物分子相互作用动力学的表面等离子体共振研究方法[J]. 化学进展, 2015, 27(5): 550-558.
[14] 蒋斌波, 袁世岭, 陈楠, 王海波, 王靖岱, 黄正梁. VPO催化氧化正丁烷反应动力学[J]. 化学进展, 2015, 27(11): 1679-1688.
[15] 刘少名, 于波, 张文强, 朱建新, 翟玉春, 陈靖. 原子尺度研究固体氧化物池氧电极中氧迁移规律[J]. 化学进展, 2014, 26(09): 1570-1585.