English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 225-233 前一篇   后一篇

• 综述与评论 •

反应-扩散斑图反应器*

刘海苗;解京选;赵长春;张凯龙;路兴杰;高庆宇**   

  1. (中国矿业大学化工学院 徐州 221008)
  • 收稿日期:2008-12-29 修回日期:2009-04-15 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 高庆宇 E-mail:gaoqy@cumt.edu.cn
  • 基金资助:

    国家自然科学基金

Reactor for Reaction-Diffusion Pattern

Liu Haimiao; Xie Jingxuan; Zhao Changchun; Zhang Kailong; Lu Xingjie; Gao Qingyu**   

  1. (College of Chemical Engineering, China University of Mining and Technology, Xuzhou 221008, China)
  • Received:2008-12-29 Revised:2009-04-15 Online:2010-01-24 Published:2010-01-07
  • Contact: Gao Qingyu E-mail:gaoqy@cumt.edu.cn
  • Supported by:

    National Natural Science Foundation of China

本文综述了在反应-扩散斑图研究中反应器的进展情况。直到20世纪80年代,人们主要在培养皿中研究封闭体系的化学波。为了研究体系在远离平衡态条件下的复杂时空动力学行为,近二十年来人们设计出许多新颖的空间开放反应器(continuously fed unstirred reactor,CFUR)如单边进料反应器(one side fed reactor,OSFR)、双边进料反应器、圆盘形凝胶、圆环形凝胶反应器以及Couette反应器等。反应介质主要为各种凝胶、微孔膜、离子交换树脂以及中孔玻璃。空间开放反应器的设计和发展极大地促进了化学斑图动力学的发展。同时讨论了反应-扩散斑图反应器结构设计遇到的困难如气泡和三维效应,并且对反应器设计与斑图研究未来发展方向进行了探讨。

A review of recent progress in the reactor for reaction-diffusion pattern is presented. Up to the 1980s, chemical waves for the closed systems were studied mainly in Petri dish; And in recent two decades, various novel spatially extended open reactors (CFUR) are designed for investigating the asymptotic behaviors and the characteristics of phase transition, such as one side fed reactor (OSFR), two side fed reactor, disc gel reactor, annular gel reactor and Couette reactor, etc. The reaction media are mainly gels, membranes, ion exchange resins and mesoporous glasses. As a result, the advances of reactor design have greatly promoted the development of pattern formation. Furthermore, the difficulties encountered, such as gas-bubble and three-dimension effect for two dimension reaction-diffusion patterns, are discussed. The future directions of reactor design and pattern formation are proposed.

Contents
1 Introduction
2 Batch reactors
3 Open reactors
3.1 One-side fed gel open reactor
3.2 Two-side fed gel open reactor
3.3 Couette open reactor
4 Other reactors
4.1 Water-in-oil reactor
4.2 Spatially particle-coupled reactor
5 Conclusion

中图分类号: 

()

[ 1 ]  MarekM, Stuchl I. Biophys Chem. , 1975, 3: 241—248
[ 2 ]  Ep stein IR, Pojman J A. An Introduction to Nonlinear Chemical Dynamics: Oscillations, Waves, Patterns, and Chaos. Oxford University Press: New York, 1998
[ 3 ]  Kurin-Csorgei K, Ep stein I R, Orbán M. Nature, 2005, 433:139—142
[ 4 ]  Ouyang Q, Boissonade J, Roux J C, et al. Phys. Lett. A,1989, 134: 282—286
[ 5 ]  Noszticzius Z, HorsthemkeW, McCormickW D, et al. Nature,1987, 329: 619—620
[ 6 ]  Guo H, LiL, OuyangQ. J. Chem. Phys. , 2003, 118: 5038—5044
[ 7 ]  Tam W Y, Vastano J A, Swinney, H. L, et al. Phys. Rev.Lett. , 1988, 61: 2163—2166
[ 8 ]  CastetsV, Dulos E, Boissonade J, Dekepper P. Phys. Rev.Lett. , 1990, 64: 2953—2956
[ 9 ]  Ouyang Q, Flesselles J M. Nature, 1996, 379: 143—146
[ 10 ]  Míguez D G, Pérez-Villar V, Mu?nuzuri A P. Phys. Rev. E,2005, 71: art. no. 066217
[ 11 ]  Berenstein I, Dolnik M, Yang L, et al. Phys. Rev. E, 2004,70: art. no. 046219
[ 12 ]  Boissonade J, Strier D E. Phys. Rev. E, 2004, 70: art.no. 016210
[ 13 ]  Szalai I, Gauffre F, LabrotV, et al. J. Phys. Chem. A, 2005,109: 7843—7849
[ 14 ]  Szalai I, de Kepper P. Phys. Chem. Chem. Phys. , 2006, 8:1105—1110
[ 15 ]  Boissonade J, de Kepper P, Gauffre F, et al. Chaos, 2006, 16:art. no. 037110
[ 16 ]  Szalai I, De Kepper P. J. Phys. Chem. A, 2004, 108: 5315—5321
[ 17 ]  Keresztessy A, Nagy I P, Bazsa G, et al. J. Phys. Chem. ,1995, 99: 5379—5384
[ 18 ]  Tóth # , GáspárV, Showalter K. J. Phys. Chem. , 1994, 98:522—531
[ 19 ]  Zakin A N, Zhabotinsky A M. Nature, 1970, 225: 535—537
[ 20 ]  Müller S C, Plesser T, HessB. Physica D, 1987, 24: 71—86
[ 21 ]  Miike H, Yamamoto H, Kai S, Müller S C. Phys. Rev. E,1993, 48: 1627—1630
[ 22 ]  Ram Reddy M K, Dahlem M, Zykov V S, et al. C. Chem.Phys. Lett. , 1995, 236: 111—116
[ 23 ]  Desimone J A, Beil D L, Scriven L E. Science, 1973, 180:946—948
[ 24 ]  Amemiya T, Nakaiwa M, Ohmori T, et al. Physica D, 1995,84: 103—111
[ 25 ]  Lázár A, Noszticzius Z, Fêrsterling H D, et al. Physica D,1995, 84: 112—119
[ 26 ]  Maselko J, Reckley J S, Showalter K J. Phys. Chem, 1989,93: 2774—2780
[ 27 ]  Maselko J, Showalter K. Narure. , 1989, 339: 609—611
[ 28 ]  Gao Q Y, An Y L, Wang J C. Phys. Chem. Chem. Phys. ,2004, 6: 5389—5395
[ 29 ]  Kuhnert L. Natunvissenschaften, 1983, 70: 464—465
[ 30 ]  Yamaguchi T, Kuhnert L, Nagy-Ungvarai Z, et al. J. Phys.Chem. , 1991, 95: 5831—5837
[ 31 ]  Gao Q Y, Xie R Y. Chem. Phys. Chem. , 2008, 9:1153—1157
[ 32 ]  Neumann B, Nagy2Ungvarai Z, Müller S C. Chem. Phys. Lett. ,1993, 211: 36—40
[ 33 ]  Winfree A T. Sci. Am. , 1974, 230: 82—95
[ 34 ]  Winston D, Arora M, Maselko J, et al. Nature, 1991, 351:132—135
[ 35 ]  Kheowan O U, Zykov V S, Müller S C. Phys. Chem. Chem.Phys. , 2002, 4: 1334—1338
[ 36 ]  Tam W Y, Horsthemke W, Noszticzius Z, et al. J. Chem.Phys. , 1988, 88: 3395—3396
[ 37 ]  Berenstein I, Dolnik M, Zhabotinsky A M, et al. J. Phys.Chem. A, 2003, 107: 4428—4435
[ 38 ]  Berenstein I, Lingfa Y, Dolnik M, et al. Phys. Rev. Lett. ,2003, 91: art. no. 58302
[ 39 ]  Lee K J, McCormick W D, Ouyang Q, et al. Science, 1993,261: 192—194
[ 40 ]  Rudovics B, Barillot E, Davies P W, et al. Phys. Chem. A,1999, 103: 1790—1800
[ 41 ]  Blanchedeau P, Boissonade J, de Kepper P. Physica D, 2000,147: 283—299
[ 42 ]  Fuentes M, Kuperman M N, Boissonade J, et al. Phys. Rev.E, 2002, 66: art. no. 56205
[ 43 ]  Labrot V, de Kepper P, Boissonade J, et al. J. Phys. Chem.B, 2005, 109: 21476—21480
[ 44 ]  Labrot V, Hochedez A, Cluzeau P, et al. J. Phys. Chem. A,2006, 110: 4043—14049
[ 45 ]  Boissonade J. Phys. Rev. Lett. , 2003, 90: art. no. 188302
[ 46 ]  Lee K J, Swinney H L. Phys. Rev. E, 1995, 51: 1899—1915
[ 47 ]  Virányi Z, Szalai I, Boissonade J, et al. J. Phys. Chem. A,2007, 111: 8090—8094
[ 48 ]  Szalai I, de Kepper P. Chaos. , 2008, 18: art. no. 026105
[ 49 ]  Kshirsagar G, Noszticzius Z, McormickW D, et al. Physica D,1991, 49: 5—12
[ 50 ]  Noszticzius Z, Ouyang Q, McCormick W D, et al. J. Phys.Chem. , 1992, 96: 6302—6307
[ 51 ]  Ouyang Q, Li R, Li Ge, et al. J. Chem. Phys. , 1995, 102:2551—2555
[ 52 ]  Park J S, Lee K. J. Phys. Rev. E, 2006, 73: 066219
[ 53 ]  Brandtst?dter H, Braune M, Schebesch I, et al. Chem. Phys.Lett. , 2000, 323: 145—154
[ 54 ]  Smolka L B, MartsB, Lin A L. Phys. Rev. E, 2005, 72: art.no. 056205
[ 55 ]  Marts B, Martinez K, Lin A L, Phys. Rev. E, 2004, 70: art.no. 056223
[ 56 ]  Lin A L, Bertram M, Martinez K, et al. Phys. Rev. Lett. ,2000, 84: 4240—4243
[ 57 ]  Ouyang Q, Swinney H L. Chaos, 1991, 1: 411—420
[ 58 ]  Ouyang Q, Swinney H L. Nature, 1991, 352: 610—612
[ 59 ]  Arneodo A, Elezgaray J, Pearson J, et al. Physica D, 1991,49: 141—160
[ 60 ]  Ouyang Q, Castets V, Boissonade J, et al. J. Chem. Phys. ,1991, 95: 351—360
[ 61 ]  Tam W Y, Swinney H L. Physica D, 1990, 46: 10—22
[ 62 ]  Tam W Y, Swinney H L. Phys. Rev. A, 1987, 36:1374—1381Ttterwtert
[ 63 ]  Grutzner J B, Patrick E A, Pellechia P J. et al. J. Am. Chem.Soc. , 1988, 110: 726—728
[ 64 ]  Al-Shamery K, Parisi J. Self-Organized Morphology in Nanostructured Materials. Springer: Berlin, 2008, 89—113
[ 65 ]  Ep stein I R, Berenstein IB, DolnikM, et al. Phil. Trans. R.Soc. A, 2008, 366: 397—408
[ 66 ]  Carballido-Landeira J, Berenstein I, Taboada P, et al. Phys.Chem. Chem. Phys. , 2008, 10, 1094—1096
[ 67 ]  Kaminaga A, Vanag V K, Epstein IR. J. Chem. Phys. , 2005,122: art. no. 174706
[ 68 ]  Vanag V K, Ep stein I R. Chaos, 2007, 17: art. no. 037110
[ 69 ]  Ep stein I R, Vanag V K. Chaos, 2005, 15: art. no. 047510
[ 70 ]  Toiya M, Vanag V K, Ep stein I R. Angew. Chem. Int. Ed. ,2008, 47: 7753—7755
[ 71 ]  Mcllwaine R E, Fenton H, Scott S K, et al. J. Phys. Chem. C,2008, 112: 2499—2505
[ 72 ]  Steele A J, Tinsley M, Showalter K. Chaos, 2008, 18: art. no.026108
[ 73 ]  Taylor A F, Tinsley M R, Wang F, et al. Science, 2009, 323:614—617
[ 74 ]  Toth R, Taylor A F, Tinsley M R. J. Phys. Chem. B, 2006,110: 10170—10176
[ 75 ]  Kheowan O U, Mihaliuk E, BlasiusB, et al. Phys. Rev. Lett. ,2007, 98: art. no. 074101
[ 76 ]  Rodriguez J, Vidal C. J. Phys. Chem. , 1989, 93: 2737—2740
[ 77 ]  Jahnke W, Skaggs W E, Winfree A T. J. Phys. Chem. , 1989,93: 740—749
[ 78 ]  Lee K J, McCormick W D, Pearson J E, Swinney H L. Nature,1994, 369: 215—218
[ 79 ]  Kim T Y, Woo S J, Hwang SM, et al. Proc. Natl. Acad. Sci.U. S. A. , 2007, 104: 11639—11642
[ 80 ]  Park J S, Woo S J, Kwon O, et al. Phys. Rev. Lett. , 2008,100: art. no. 068302
[ 81 ]  Shao X, Wu Y, Zhang J, et al. Phys. Rev. Lett. , 2008, 100:art. no. 198304
[ 82 ]  Berenstein I, Mu?nuzuri A P, Yang L, et al. Phys. Rev. E. ,2008, 78: art. no. 025101
[ 83 ]  Yang L, Dolnik M, Zhabotinsky, AM, et al. Chaos, 2006, 16:art. no. 037114
[ 84 ]  Szalai I, de Kepper P. J. Phys. Chem. A, 2008, 112:783—786
[ 85 ]  Yashin V V, BalazsA C. Science, 2006, 314: 798—801
[ 86 ]  Yang L, Berenstein I, Ep stein I R. Phys. Rev. Lett. , 2005,95: art. no. 038303
[ 87 ]  Qiao C, Wang H, Ouyang Q. Phys. Rev. E, 2009, 79: art.no. 016212
[ 88 ]  BarM, Brusch L. New Journal of Physics, 2004, 6: 1—12
[ 89 ]  Wu Y, Qian C, Ouyang Q, et al. Phys. Rev. E, 2008, 77:art. no. 036226
[ 90 ]  Ginn B T, Steinbock O. Phys. Rev. Lett. , 2004, 93: art. no.158301
[ 91 ]  Panfilov A V, Keldermann R H, Nash M P. Proc. Natl. Acad.Sci. USA, 2007, 104: 7922—7926
[ 92 ]  Zhang L, Gao Q Y, Wang Q, et al. Phys. Rev. E, 2006, 74:art. no. 046112
[ 93 ]  Gao Q Y, Zhang L, Wang Q, et al. Chaos. , 2009, 19: art.no. 013135
[ 94 ]  Mikhailov A S, Showalter K. Physics Reports, 2006, 425: 79—194
[ 95 ]  Wang H, Fu Z, Xu X, et al. J. Phys. Chem. A, 2007, 111:1265—1270
[ 96 ]  Chinake C R, Simoyi R H. J. Phys. Chem. , 1994, 98: 4012—4019
[ 97 ]  Qiao C, Wu Y, Lu X C, et al. Chaos, 2008, 18: art.no. 026109
[ 98 ]  Lu X, Wang C, Qiao C, et al. J. Chem. Phys. , 2008, 128:art. no. 114505
[ 99 ]  Bònsògi T, Steinbock O. Chaos. , 2008, 18: art. no. 026102

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[3] 潘迪, 刘鹏, 张宏斌, 唐颐. 沸石的连续流动相合成[J]. 化学进展, 2020, 32(7): 873-881.
[4] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 于洪涛, 陈硕, 全燮*, 张振华. 光催化水处理消毒的原理、材料和反应器[J]. 化学进展, 2017, 29(9): 1030-1041.
[7] 喻娜, 丁慧敏, 汪成. 有机分子笼的合成及应用[J]. 化学进展, 2016, 28(12): 1721-1731.
[8] 龚晚君, 赵智勇, 刘思敏*. 葫芦脲作为超分子纳米反应器/催化剂的研究[J]. 化学进展, 2016, 28(12): 1732-1742.
[9] 贾思思, 晁洁, 樊春海, 柳华杰. DNA折纸术纳米反应器[J]. 化学进展, 2014, 26(05): 695-705.
[10] 袁玲, 刘洋, 杨涛, 刘海苗, 高庆宇. 硫化学反应体系中的振荡与斑图形成[J]. 化学进展, 2014, 26(04): 529-544.
[11] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[12] 黄振, 何方*, 赵坤, 郑安庆, 李海滨, 赵增立. 基于晶格氧的甲烷化学链重整制合成气[J]. 化学进展, 2012, 24(08): 1599-1609.
[13] 陈立峰, 史静, 张亚红, 唐颐*. 核壳型沸石复合材料和反应器[J]. 化学进展, 2012, 24(07): 1262-1269.
[14] 张超, 郎林, 阴秀丽, 吴创之. 生物乙醇重整制氢反应器[J]. 化学进展, 2011, 23(4): 810-818.
[15] 桑丽霞, 孙彪, 李艳霞, 吴玉庭, 马重芳. 太阳能甲烷重整反应中的催化活性吸收体[J]. 化学进展, 2011, 23(11): 2233-2239.
阅读次数
全文


摘要

反应-扩散斑图反应器*