English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 194-200 前一篇   后一篇

• 综述与评论 •

基于局域表面等离子体共振效应的光学生物传感器*

肖桂娜;蔡继业**   

  1. (暨南大学纳米化学研究所 广州 510632)
  • 收稿日期:2009-01-13 修回日期:2009-03-03 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 蔡继业 E-mail:tjycai@jnu.edu.cn

Optical Biosensors Based on Localized Surface Plasmon Resonance Effect

Xiao Guina; Cai Jiye**   

  1.  (Institute of Nano-Chemistry, Jinan University, Guangzhou 510632, China)
  • Received:2009-01-13 Revised:2009-03-03 Online:2010-01-24 Published:2010-01-07
  • Contact: Cai Jiye E-mail:tjycai@jnu.edu.cn

贵金属纳米粒子表现出许多常规块体材料所不具备的优异性能,其中局域表面等离子体共振 (LSPR) 特性是研究热点之一。LSPR 的形状和位置与纳米粒子的组成、大小、形状、介电性质以及局域介质环境密切相关。基于这一特性,贵金属纳米粒子已广泛应用于光学生物传感器、光过滤器和表面增强光谱等领域。本文对各种结构的贵金属纳米粒子的制备方法及其在光学生物传感器中的应用进行了综述,并对 LSPR 纳米传感器的未来发展前景做了展望。

Noble metal nanoparticles exhibit excellent properties compared to the conventional bulk elements, and the localized surface plasmon resonance (LSPR) has become one of the research hot points. The shape and position of LSPR are mainly dependent on the composition, size, shape, dielectric properties, as well as the local dielectric environment of the metal nanoparticles. Based on this property, noble metal nanoparticles have been widely applied in optical biosensors, optical filters, and surface enhanced spectroscopies. In this paper, the preparation of various noble metal nanostructures and their applications in optical biosensors are reviewed. The future development prospects of LSPR nanosensors are also present.

Contents
1 Introduction
2 Localized surface plasmon resonance of metal nanoparticles
3 The basic principles of LSPR nanosensors
4 The common LSPR sensors substrates
4.1 Metal colloides
4.2 Metal nanorods
4.3 Core/shell composite nanoparticles
4.4 Cap-shaped composite nanoparticles
4.5 Ordered metal nanostructure arrays
5 Prospects

中图分类号: 

()

[ 1 ]  Clark L C, Lyons C. Ann. N. Y. Acad. Sci. , 1962, 102:29—45
[ 2 ]  Hicks G P, Updike S J. Anal. Chem. , 1966, 38: 726—730
[ 3 ]  Kelly K L, Coronado E, Zhao L L, et al. J. Phys. Chem. B,2003, 107: 668—677
[ 4 ]  Cluster Materials ( Eds. Kreibig U, Vollmer M) . New York:Springer Berlin Heidelberg, 1995. 532
[ 5 ]  HaesA J, Van Duyne R P. J. Am. Chem. Soc. , 2002, 124:10596—10604
[ 6 ]  Jung L S, Campbell C T, Chinowsky T M, et al. Langmuir,1998, 14: 5636—5648
[ 7 ]  Jung L S, Campbell C T. Phys. Rev. Lett. , 2000, 84: 5164—5167
[ 8 ]  Malinsky M D, Kelly K L, Schatz G C, et al. J. Am. Chem.Soc. , 2001, 123: 1471—1482
[ 9 ]  BellW C, Myrick M L. J. Colloid Inter. Sci. , 2007, 242:300—305
[ 10 ]  Orendorff C J, Sau T K, Murphy C J. Small, 2006, 2:636—639
[ 11 ]  Thanh N T K, Rosenzweig Z. Anal. Chem. , 2002, 74: 1624—1628
[ 12 ]  SastryM, Lala N, PatilV, et al. Langmuir, 1998, 14: 4138—4142
[ 13 ]  Taton T A, Mirkin C A, Letsinger R L. Science, 2000, 289:1757—1760
[ 14 ]  Thaxton C S, Mirkin C A. Nature, 2005, 23: 681—682
[ 15 ]  Ghosh S K, Nath S, Kundu S, et al. J. Phys. Chem. B, 2004,108: 13963—13971
[ 16 ]  Englebienne P, van Hoonacker A, Verhas M. Analyst, 2001,126: 1645—1651
[ 17 ]  Wang Z P, Hu J Q, J in Y, et al. Clin. Chem. , 2006, 52:1958—1961
[ 18 ]  Hu J Q, Wang Z P, Li J H. Sensors, 2007, 7: 3299—3311
[ 19 ]  Chen D, Wang G, Li J H. J. Phys. Chem. C, 2007, 111:2351—2367
[ 20 ]  Endoa T, Ikedab R, Yanagidaa Y, et al. Analytica Chimica Acta, 2008, 611: 205—211
[ 21 ]  Kreuzer M P, Quidant R, Salvador J P. Anal. Bioanal. Chem. ,2008, 391: 1813—1820
[ 22 ]  Frederix F, Friedt J M, Choi K H, et al. Anal. Chem. , 2003,75: 6894—6900
[ 23 ]  Link S, El-SayedM A. J. Phys. Chem. B, 1999, 103:8410—8426
[ 24 ]  Yu C X, Irudayara J, Yu C X, et al. Anal. Chem. , 2007, 79:572—579
[ 25 ]  Chen C D, Cheng S F, Chau L K. Biosensors and Bioelectronics, 2007, 22: 926—932
[ 26 ]  Mayer K M, Lee S Y, Liao H W. Nano Lett. , 2008, 2: 687—692
[ 27 ]  Endo T, Kerman K, Nagatani N. Anal. Chem. , 2006, 78:6465—6475
[ 28 ]  Tam F, Moran C, Halas N. J. Phys. Chem. B, 2004, 108:17290—17294
[ 29 ]  Sun Y G, Xia Y N. Anal. Chem. , 2002, 74: 5297—5305
[ 30 ]  Wang Y, Qian W P, Tan Y, et al. Biosensors and Bioelectronics, 2008, 23: 1166—1170
[ 31 ]  Wang H, BrandlD W, HalasN J, et al. Nano Lett. , 2006, 6:827—832
[ 32 ]  Takei H. J. Vac. Sci. Technol. B, 1999, 17: 1906—1911
[ 33 ]  Himmelhaus M, Takei H. Sensors and Actuators B, 2000, 63:24—30
[ 34 ]  Takei H, Cao Z. Japan J. Op tics, 2004, 33: 180—182
[ 35 ]  Cao Z, Gong F C, Huang X X, et al. Bioinformatics and Biomedical Engineering, 2008, 16 /18: 1596—1598
[ 36 ]  Sherry L J, J in R C, Van Duyne R P, et al. Nano Lett. , 2006,6: 2060—2065
[ 37 ]  Chan G H, Zhao J, Van Duyne R P, et al. Nano Lett. , 2007,7: 1947—1952
[ 38 ]  Chan G H, Zhao J, Van Duyne R P, et al. J. Phys. Chem. C,2008, 112: 13958—13963
[ 39 ]  Haynes C L, McFarland A D, Smith M T, et al. J. Phys.Chem. B, 2002, 106: 1898—1902
[ 40 ]  HaesA J, Van Duyne R P. Proc. SP IE, 2003, 5221: 47—58
[ 41 ]  HaesA J, Chang L, Klein W L, et al. J. Am. Chem. Soc. ,2005, 127: 2264—2271
[ 42 ]  Riboh J C, HaesA J, McFarland A D, et al. J. Phys. Chem.B, 2003, 107: 1772—1780
[ 43 ]  Zhu S L, Li F, Du C L, et al. Sensors and Actuators B, 2008,134: 193—198

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 姚国英, 刘清路, 赵宗彦. 局域表面等离子体共振效应在光催化技术中的应用[J]. 化学进展, 2019, 31(4): 516-535.
[3] 曹小卫, 陈帅, 鲍敏, 史宏灿, 李巍. 金纳米星的制备、表面修饰及其在生物医学领域的应用研究[J]. 化学进展, 2018, 30(9): 1380-1391.
[4] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[5] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[6] 任芳芳, 蒋丰兴, 周卫强, 杜玉扣*, 徐景坤*. 导电聚合物/贵金属复合材料应用于C1小分子电催化氧化[J]. 化学进展, 2012, (9): 1818-1836.
[7] 陶凯, 王继乾*, 夏道宏, 徐海, 吕建仁, 山红红. 多肽在贵金属纳米粒子制备中的应用[J]. 化学进展, 2012, 24(07): 1294-1308.
[8] 夏文健, 孟令杰, 刘丽, 路庆华. 贵金属纳米粒子修饰碳纳米管的研究[J]. 化学进展, 2010, 22(12): 2298-2308.