English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 173-178 前一篇   后一篇

• 综述与评论 •

交联酶聚体技术研究进展*

王梦凡;齐崴**;苏荣欣;何志敏   

  1. (天津大学化工学院化学工程研究所 化学工程联合国家重点实验室 天津 300072)
  • 收稿日期:2009-02-03 修回日期:2009-04-03 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 齐崴 E-mail:qiwei@tju.edu.cn
  • 基金资助:

    863项目

Advances in Cross-Linked Enzyme Aggregates

Wang Mengfan; Qi Wei**; Su Rongxin; He Zhimin   

  1. (State Key Laboratory of Chemical Engineering, Chemical Engineering Research Center, School of Chemical Engineering and Technology; Tianjin University, Tianjin 300072, China)
  • Received:2009-02-03 Revised:2009-04-03 Online:2010-01-24 Published:2010-01-07
  • Contact: Qi Wei E-mail:qiwei@tju.edu.cn

交联酶聚体(CLEAs)是一类新型的固定化酶技术,具有制备简单、酶活回收率高、操作和保存稳定性强等优点。近年来,CLEAs技术与材料学、印迹工程、介质工程、反应工程学等相结合取得了一系列新进展,包括载体固定化CLEAs、包埋CLEAs、印迹法CLEAs、多酶CLEAs、CLEAs膜浆反应器等,在手性分子拆分与合成。抗生素生产等领域取得了一些成果。本文对CLEAs酶活影响因素及CLEAs技术的最新研究进展进行了分析与总结,并展望了需进一步深入开展的内容,有助于生物工程、酶工程、化学工程和材料科学等领域相关研究工作的开展。

Cross-linked enzyme aggregates (CLEAs) is a novel kind of carrier-free immobilized enzyme. It has many advantages including simple preparation procedure, high catalytic activity, easy recovery and increased stability. In recent years, a series of new progress has been made in preparation of CLEAs through combining material science, molecular imprinting engineering, medium engineering and reaction engineering with enzyme immobilization. Car-rier-immobilized CLEAs, encapsulated CLEAs, imprinted CLEAs, combi-CLEAs and CLEAs membrane slurry reactor are respectively discussed, and their application in chiral separation and antibiotics production are introduced. Important factors influencing the activity of CLEAs are analyzed and most recent developments of CLEAs are summarized in this paper. In addition, some prospects for this attractive technology are also presented. It will be helpful for relevant researches in bioengineering, enzyme technology, chemical engineering and materials science.

Contents
1 Introduction
2 Important factors influencing the activity of CLEAs
3 Progress in CLEAs
3.1 Carrier- immobilized CLEAs
3.2 Encapsulated CLEAs
3.3 Imprinted CLEAs
3.4 Combi-CLEAs
3.5 CLEAs membrane slurry reactor
4 Applications in biocatalysis and biotransformtion
5 Problems and prospects

中图分类号: 

()

[ 1 ]  Cao L Q, van Rantwijk F, Sheldon R A. Organic Letters, 2000,2 (10) : 1361—1364
[ 2 ]  Jansen E F, Olson A C. Archives of Biochemistry and Biophysics, 1969, 129 (1) : 221—227
[ 3 ]  Haring D, Schreier P. Current Op inion in Chemical Biology,1999, 3 (1) : 35—38
[ 4 ]  Sheldon R A. Advanced Synthesis & Catalysis, 2007, 349 ( 8 /9) : 1289—1307
[ 5 ]  Cao L, Langen L V, Sheldon R A. Current Opinion in Biotechnology, 2003, 14 (4) : 387—394
[ 6 ]  Schoevaart R, WolbersM W, Golubovic M, Ottens M. Biotechnology and Bioengineering, 2004, 87: 754—762
[ 7 ]  Aytar B S, Bakir U. Process Biochemistry, 2008, 43 ( 2 ) :125—131
[ 8 ]  van Langen L M, Selassa R P, van Rantwijk F, et al. Organic Letters, 2005, 7 (2) : 327—329
[ 9 ]  董晓毅(Dong X Y) , 夏仕文(Xia S W) . 生物工程学报(Chinese Journal of Biotechnology) , 2003, 19 (3) : 332—336
[ 10 ]  王梦凡(WangM F) , 贾辰熙( J ia C X) , 齐崴(QiW)等. 化学学报(Acta Chimica Sinica) , 2008, 66 (16) : 1929—1934
[ 11 ]  Yu H W, Chen H, Wang X, et al. Journal of Molecular Catalysis B-Enzymatic, 2006, 43 (1 /4) : 124—127
[ 12 ]  Chen J, Zhang J L, Han B X, et al. Colloids and Surfaces B-Biointerfaces, 2006, 48 (1) : 72—76
[ 13 ]  Shah S, Sharma A, Gup taM N. Analytical Biochemistry, 2006,351 (2) : 207—213
[ 14 ]  Kim M I, Kim J, Lee J, et al. Biotechnology and Bioengineering, 2007, 96: 210—218
[ 15 ]  Kim M I, Kim J, Lee J, et al. Microporous and Mesoporous Materials, 2008, 111 (1 /3) : 18—23
[ 16 ]  Wilson L, Illanes A, Pessela B C C, et al. Biotechnology and Bioengineering, 2004, 86 (5) : 558—562
[ 17 ]  Sangeetha K, Emilia Abraham T. International Journal of Biological Macromolecules, 2008, 43 (3) : 314—319
[ 18 ]  曹林秋(Cao L Q ) . 载体固定化酶———原理、应用和设计( Carrier-Bound Immobilized Enzyme: Principles, Applicationsand Design) . 北京: 化学工业出版社(Beijing: Chemical In-dustry Press) , 2008. 378
[ 19 ]  Lopez-Serrano P, Cao L, van Rantwijk F, et al. Biotechnology Letters, 2002, 24 (16) : 1379—1383
[ 20 ]  Cabirol F L, Tan P L, Tay B, et al. Advanced Synthesis & Catalysis, 2008, 350 (14 /15) : 2329—2338
[ 21 ]  Dalal S, Kapoor M, Gup ta M N. Journal ofMolecular Catalysis B-Enzymatic, 2007, 44 (3 /4) : 128—132
[ 22 ]  Dalal S, Sharma A, Gup ta M N. Chemistry Central Journal,2007, 1: art. no. 13
[ 23 ]  Sorgedrage rM J, Verdoes D, Van derMeer H, et al. Chimica Oggi-Chemistry Today, 2008, 26 (4) : 23—25
[ 24 ]  Titulaer G TM, Zhu J, KlunderA J H, et al. Organic Letters,2000, 2 (4) : 473—475
[ 25 ]  Zheng L, Zhang S, Feng Y, et al. Journal ofMolecular Catalysis B: Enzymatic, 2004, 31 (4 /6) : 117—122
[ 26 ]  Zheng L, Zhang S, Zhao L, et al. Journal ofMolecular Catalysis B-Enzymatic, 2006, 38 (3 /6) : 119—125
[ 27 ]  Zhao L F, ZhengL Y, Gao G, et al. Journal ofMolecular Catalysis B-Enzymatic, 2008, 54 (1 /2) : 7—12
[ 28 ]  Mateo C, Chmura A, Rustler S, et al. Tetrahedron, 2006, 17(3) : 320—323

[1] 侯晨, 陈文强, 付琳慧, 张素风, 梁辰. 共价有机框架材料在固定化酶及模拟酶领域的应用[J]. 化学进展, 2020, 32(7): 895-905.
[2] 郭华, 张蕾, 董旭, 申刚义, 尹俊发. 固定化多酶级联反应器[J]. 化学进展, 2020, 32(4): 392-405.
[3] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[4] 辛宝娟 邢国文. 氧化铁磁性纳米粒子固定化酶*[J]. 化学进展, 2010, 22(04): 593-602.
阅读次数
全文


摘要

交联酶聚体技术研究进展*