English
新闻公告
More
化学进展 2010, Vol. 22 Issue (01): 113-118 前一篇   后一篇

• 综述与评论 •

聚萘的合成及其光电器件*

黄美荣;高鹏;李新贵**   

  1. (同济大学材料学院 先进土木工程材料教育部重点实验室 材料化学研究所 上海 200092)
  • 收稿日期:2009-01-13 修回日期:2009-06-04 出版日期:2010-01-24 发布日期:2010-01-07
  • 通讯作者: 李新贵 E-mail:adamxgli@yahoo.com

Synthesis and Photoelectric Device of Polynaphthalene

Huang Meirong; Gao Peng; Li Xingui**   

  1. (Institute of Materials Chemistry, Key Laboratory of Advanced Civil Engineering Materials of the Ministry of Education, College of Materials Science and Engineering, Tongji University, Shanghai 200092,China)
  • Received:2009-01-13 Revised:2009-06-04 Online:2010-01-24 Published:2010-01-07
  • Contact: Li Xingui E-mail:adamxgli@yahoo.com

本文系统回顾和总结了化学方法制备聚萘的历史进程和研究成果, 包括上世纪六十年代的Lewis酸直接氧化萘单体缩聚法和最近的萘衍生物的Yamamoto法和Suzuki法。指出萘基格氏试剂中介法是高产率获得各种具有确定结构聚萘的有效方法;等离子体沉积法等可直接制备聚萘膜,从而避免了因聚萘的难溶、难熔而引起的加工成型问题;而Yamamoto法和Suzuki法则是合成可溶性聚萘衍生物的有效途径,且聚合物产物具有优异的荧光性能,荧光量子效率最高达0.96。对于萘在1,4- 和5,8-位同时链接形成的规整的一维石墨结构具有非常高的菲边缘碳和边缘碳密度,有望显示出比二维石墨材料更高的锂掺杂能力,另外其较强的蓝色荧光发射特性以及高温稳定性,聚萘在锂离子二次电池电极材料、聚合物发光二极管、耐高温材料等领域都将显示出诱人的应用前景。

The development progress and the achievements in chemical preparation of polynaphthalene are systematically reviewed and summarized, including oxidative polycondensation of naphthalene monomer by Lewis acid catalysts developed in the last century and Yamamoto and Suzuki methods of naphthalene derivatives developed recently. It is pointed out that naphthalene-based Grignard metathesis is the effective way to obtain polynaphthalene having definite structure with high yield, while plasma deposition can directly form film which accordingly avoids the intractability arising from difficult dissolution and melting of polynaphthalene. Especially through Yamamoto and Suzuki methods, polynaphthalene derivatives with excellent solubility and high PL quantum efficiency up to 0.96 can be obtained. Polynaphthalene with one-dimensional graphite structure can be produced by coupling naphthalene unit at 1,4- and 5,8- simultaneously. The kind of polynaphthalene possesses high densities of both phenanthrene-edge carbon and edge carbon, which could be expected a higher Li doping capacity. Together with the strong blue fluorescence emitting characteristics and high thermal stability, the polymer reveals the promising future in fields of electrode material for Li-ion rechargeable battery, polymer light-emitting diode and high-temperature-resistant materials.

Contents
1 Introduction
2 Synthesis of polynaphthalene
2.1 Oxidative polycondensation of naphthalene by Lewis acid catalysts
2.2 Dehalogenation polycondensation of dihalogenated naphthalene catalysed by sodium
2.3 Grignard metathesis catalysed by Ni(Ⅱ)-complex
2.4 Plasma polymerization
2.5 Yamamoto and Suzuki polymerizations
3 Performance of polynaphthalene
3.1 High thermal stability of polynaphthalene
3.2 Fluorescence of polynaphthalene
4 Application of polynaphthalene
4.1 Polynaphthalene light-emitting diode
4.2 Polynaphthalene Li-ion rechargeable battery
5 Outlook

中图分类号: 

()

[ 1 ]  Yamamoto T, Koizumi T1 Polymer, 2007, 48 ( 19 ) :5449—5472
[ 2 ]  Bargon J, Mohmand S, Waltman R J. J. Res. Develop. , 1983,27 (4) : 330—341
[ 3 ]  Nêll G, Lambert C, LynchM, et al. J. Phys. Chem. C, 2008,112 (6) : 2156—2164
[ 4 ]  Dias J R. J. Phys. Org. Chem. , 2007, 20: 395—409
[ 5 ]  Kovacic P, Wu C. J. Polym. Sci. , 1960, 47: 45—54
[ 6 ]  Kovacic P, Koch FW. J. Org. Chem. , 1963, 28 (7) : 1864—1867
[ 7 ]  Kovacic P, Lange R M. J. Org. Chem. , 1963, 28 ( 4 ) :968—972
[ 8 ]  Kovacic P, KyriakisA. J. Am. Chem. Soc. , 1963, 85: 454—458
[ 9 ]  Kovacic P, Oziomek J. J. Org. Chem. , 1964, 29 ( 1 ) :100—104
[ 10 ]  Kovacic P, Koch FW. J. Org. Chem. , 1965, 30: 3176—3181
[ 11 ]  Hara S, Toshima N. J. Electroanal. Chem. , 1994, 379:181—190
[ 12 ]  Huang ZM, Qu L T, Shi G Q, et al. J. Electroanal. Chem. ,2003, 556: 159—165
[ 13 ]  Hara S, Toshima N. Chem. Lett. , 1990, 19: 269—272
[ 14 ]  Zhang L J, Wan M X, Wen Y. Macromol. Rap id Commun. ,2006, 27 (5) : 366—371
[ 15 ]  BardeW S, Pakade S V, Yawale S P. J. Non-Cryst. Solids,2007, 353 (13 /15) : 1460—1465
[ 16 ]  Karim M R, Lee C J, LeeM S. J. Polym. Sci. PartA: Polym.Chem. , 2006, 44 (18) : 5283—5290
[ 17 ]  Li X G, Li J, HuangM R. Chem. Eur. J. , 2009, 15: 6446—6455
[ 18 ]  Hsing C F, Jones M B, Kovacic P. J. Polym. Sci. Part A:Polym. Chem. , 1981, 19: 973—984.
[ 19 ]  Arnautov S A, Kobryanskii V M. Macromol. Chem. Phys. ,2000, 201: 809—814
[ 20 ]  李新贵(Li X G) , 黄美荣(HuangM R) , 廖耀祖(Liao Y Z) .CN101328255, 2009
[ 21 ]  Erwin H, Wharton N J. US3431221, 1969
[ 22 ]  SatoM A, Kaeriyama K, Someno K. Makromol. Chem. , 1983,184: 2241—2249
[ 23 ]  Shi G Q, Xue G, Li C, et al. Polym. Bull. , 1994, 33: 325—329
[ 24 ]  Zecchin S, Tomat R, Schiavon G, et al. Synth. Met. , 1988,25: 393—399
[ 25 ]  马於光(Ma Y G) , 唐建国( Tang J G) , 张海峰( Zhang H F)等. 高等学校化学学报(Chem. J. Chin. Univ. ) , 1994, 15:1095—1096
[ 26 ]  Mori T, KijimaM. Op t. Mater. , 2007, 30 (4) : 545—552
[ 27 ]  Mori T, Kijima M. J. Polym. Sci. Part A: Polym. Chem. ,2008, 46: 4258—4263
[ 28 ]  Zhang J X, Liu C, Shi G Q, et al. J. Polym. Sci. Part B:Polym. Phys. , 2005, 43: 241—251
[ 29 ]  祖革( Zu G) , 罗维克(LuoW K) , 吴浩青(Wu H Q) . 化学学报(Acta Chimica Sinica) , 1999, 57: 465—471
[ 30 ]  Nishio S, Fukumura H, Tamura K, et al. J. Laser App l. ,2003, 15 (3) : 179—183
[ 31 ]  Yamabe T, Yata S, Wang S. Synth. Met. , 2003, 137:949—951
[ 32 ]  Wang S, Yata S, Nagano J, et al. J. Electrochem. Soc. , 2000,147 (7) : 2498—2502
[ 33 ]  Yata S, Hata Y, Kinoshita H, et al. Synth. Met. , 1995, 73:273—277

[1] 张婷婷, 洪兴枝, 高慧, 任颖, 贾建峰, 武海顺. 基于铜金属有机配合物的热活化延迟荧光材料[J]. 化学进展, 2022, 34(2): 411-433.
[2] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[3] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[4] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[5] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[6] 王惠亚, 赵立敏, 张芳, 何丹农. 高性能锂离子二次电池隔膜[J]. 化学进展, 2019, 31(9): 1251-1262.
[7] 蒋云波, 李欢欢, 陶冶, 陈润锋, 黄维. 热活化延迟荧光聚合物及其电致发光器件[J]. 化学进展, 2019, 31(8): 1116-1128.
[8] 杨智文, 詹迎迎, 籍少敏, 杨庆旦, 李琦, 霍延平. 含硼有机发光二极管材料与器件[J]. 化学进展, 2019, 31(6): 906-928.
[9] 蔡勤山, 王世荣, 肖殷, 李祥高. 交联型小分子空穴传输材料在溶液工艺制备有机发光二极管中的应用[J]. 化学进展, 2018, 30(8): 1202-1221.
[10] 姚送送, 李诺, 叶红齐, 韩凯*. 二维MXene材料的制备与电化学储能应用[J]. 化学进展, 2018, 30(7): 932-946.
[11] 许頔, 沈沪江*, 袁慧慧, 王炜, 解俊杰. 聚(3,4-乙撑二氧噻吩)基电极材料:制备、改性及在电子器件中的应用[J]. 化学进展, 2018, 30(2/3): 252-271.
[12] 李亚琦, 左朋建*, 李睿楠, 马玉林, 尹鸽平*. 镁硫二次电池电解液[J]. 化学进展, 2017, 29(5): 553-562.
[13] 李骄阳, 王莉, 何向明. 磷基复合负极在二次电池中的研究进展[J]. 化学进展, 2016, 28(2/3): 193-203.
[14] 姜贺, 靳继彪, 陈润锋, 郑超, 黄维. 基于给-受体结构的热活化延迟荧光材料[J]. 化学进展, 2016, 28(12): 1811-1823.
[15] 杨雷, 程涛, 曾文进, 赖文勇, 黄维. 导电聚合物薄膜的喷墨打印制备及其光电器件[J]. 化学进展, 2015, 27(11): 1615-1627.
阅读次数
全文


摘要

聚萘的合成及其光电器件*