English
新闻公告
More
化学进展 2009, Vol. 21 Issue (6): 1335-1343 前一篇   后一篇

• 综述与评论 •

基质辅助激光解吸电离质谱分析糖类物质*

王红敏1;张萍1,2;黄琳娟1;王仲孚1**   

  1. (1. 西北大学生命科学学院  |西部资源生物与现代生物技术省部共建教育部重点实验室  |陕西省生物技术重点实验室 西安 710069;2.咸阳师范学院化学系 咸阳 712000 )
  • 收稿日期:2008-06-24 修回日期:2008-08-01 出版日期:2009-06-24 发布日期:2009-06-16
  • 通讯作者: 王仲孚 E-mail:wangzhf@nwu.edu.cn
  • 基金资助:

    863项目

Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry(MALDI) Application in Carbohydrates Analysis

Wang Hongmin1|Zhang Ping1,2| Huang Linjuan1|Wang Zhongfu1**   

  1. (1. Key Laboratory of Ministry of Education for Western China Resource Biology and Biotechnology, Key Laboratory of Shanxi Province for Biotechnology, The College of Life Sciences, Northwest University, |Xi ’an 710069, China|2.Chemistry Departement of Xianyang Normal University, Xianyang 712000, China )
  • Received:2008-06-24 Revised:2008-08-01 Online:2009-06-24 Published:2009-06-16
  • Contact: Wang Zhongfu E-mail:wangzhf@nwu.edu.cn

基质辅助激光解吸电离质谱(MALDI-MS)是一种样品无需衍生、图谱解析简单、灵敏度高、快速便捷的分析生物样品结构的方法,已被广泛用于糖类物质的结构分析。此技术与HPLC、糖苷酶外切技术以及各种串联质谱等技术结合使用,可给出糖类物质详细的结构信息。本文介绍了基质辅助激光解吸(MALDI)离子化技术的原理、特点、与飞行时间质量分析器(TOF)联用时的相关技术和裂解方式,以及MALDI-MS在分析糖类物质时选用的基质、样品的制备、糖链碎片分析的方法和在不同糖型分析中的应用,展示了它的发展前景。随着MALDI对糖类物质分析时基质的改进、质谱分辨率的提高、质量检测范围的扩大,MALDI-MS技术必将成为糖类物质分析中强有力的工具。

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) is a rapid and high sensitivity method, with spectrum unscrambling easily and sample underivatized for structural elucidation of biological specimen. This technique has been widely used to analyze the structure of the glycan and glycoprotein. Combined with other methods such as high performance liquid chromatography ( HPLC ) or exoglycosidases digestion, MALDI-MS can conveniently provides more detailed information for analysis carbohydrate structure. With kinds of tandem mass spectrometry introduced in the recent years, high quality fragmentation spectra can be obtained now, offering the possibility of more complete analysis by mass spectrometry alone. The application of MALDI-MS to analyze carbohydrates and glycoprotein is reviewed in this article, the principle and characteristics of the instrument, the correlation technique and cleavage mode of MALDI combined with time-of-flight(TOF)analyser, MALDI matrix selection, sample preparation, fragmentation identification and glycosylation site definition are also discussed, and the prospect is showed at last. With the better maxtrix , higher resolution and wider molecular weight, MALDI-MS will play a role of significance in carbohydrates analysis.

Contents
1 Principles and characteristics of MALDI
2 MALDI combined with time-of-flight(TOF)analyser
2.1 Linear mode
2.2 Reflectron mode
3 Methods for MALDI -MS analysis of carbohydrates
3.1 Matrix selection
3.2 Sample preparation
3.3 Fragmentation identification
4 Applications of MALDI -MS to the carbohydrates analysis
4.1 Determination of molecular weight
4.2 Analysis of carbohydrates structure
4.3 Definition of glycosylation site
5 Prospect

中图分类号: 

()

[ 1 ]  Harvey D J . Mass Spectrometry Reviews , 2008 , 27 (2) : 125 —201
[ 2 ]  KarasM, Hillenkamp F. Anal . Chem. , 1988 , 60 (20) : 2299 —2301
[ 3 ]  Kaufmann R , Kirsch D , Spengler B. International Journal of Mass Spectrometry and Ion Processes , 1994 , 131 : 355 —385
[ 4 ]  Colby S M, King T B , Reilly J P. Rapid Communications in Mass Spectrometry , 1994 , 8 (11) : 865 —868
[ 5 ]  Chernushevich I V , Loboda A V , Thomson B A. Mass Spectrometry ,2001 , 36 (8) : 849 —865
[ 6 ]  Stahl B , Steup M, Karas M, et al . Anal . Chem. , 1991 , 63 :1463 —1466
[ 7 ]  张东娣(Zhang D D) , 周丽华(Zhou L H) , 邓慧敏(Deng H M) .中山大学学报( Acta Scientiarum Naturalium Universitatis Sunyatseni ) , 2005 , 44 (1) : 58 —60
[ 8 ]  Lattova E , Chen V C , Varma S , et al . Rapid Communications in Mass Spectrometry , 2007 , 21 (10) : 1644 —1650
[ 9 ]  Bacher G, Korner R , Atrih A , et al . Journal of Mass Spectrometry ,2001 , 36 (2) : 124 —139
[10 ]  Harvey D J . International Journal of Mass Spectrometry , 2003 , 226 :1 —35
[11 ]  Mechref Y, Novotny M V. Journal of the American Society for Mass Spectrometry , 1998 , 9 (12) : 1293 —1302
[12 ]  Snovida S I , Chen V C , Perreault H. Analytical Chemistry , 2006 ,78 (24) : 8561 —8568
[13 ]  Nilsson C L. Rapid Commun. Mass Spectrom. , 1999 , 13 : 1067 —1071
[14 ]  Kang P , Mechref Y, Klouckova I , et al . Rapid Commun. Mass Spectrom. , 2005 , 19 : 3421 —3428
[15 ]  王仲孚(Wang Z F) , 贺建宁(He J Y) , 尉亚辉(We T H) 等. 有机化学(Chinese Journal of Organic Chemistry) , 2006 , 26 ( 5) :592 —598
[16 ]  林雪(Lin X) , 王仲孚(Wang Z F) , 黄琳娟(Huang L J ) 等. 高等学校化学学报(Chemical Journal of Chinese Universities) , 2006 ,27 (8) : 1456 —1458
[17 ]  Zhang Y, Huang L J , Wang Z F. Chinese Journal of Chemistry ,2007 , (25) : 1522 —1528
[18 ]  Domon B , Costello C E. Analytical chemistry , 1994 , 66 (5) : 692 —698
[19 ]  Ngoka L C , Gal J F , Lebrilla C B. Analytical chemistry , 1994 , 66(5) : 692 —698
[20 ]  Stahl B , Linos A , Karas M, et al . Anal . Biochem. , 1997 , 246(2) : 195 —204
[21 ]  Powell A K, Harvey D J . Rapid Communications in Mass Spectrometry , 1996 , 10 (9) : 1027 —1032
[22 ]  Takao T, Tambara Y, Nakamura A , et al . Rapid Communications in Mass Spectrometry , 1996 , 10 (6) : 637 —640
[23 ]  邓慧敏(Deng H M) , 张珍英(Zhang Z Y) , 查庆民(Cha Q M)等. 高等学校化学学报( Chemical Journal of Chinese Universities) , 2003 , 24 (6) : 996 —999
[24 ]  Daas PJ H , Arisz P W, Schols H A , et al . Anal . Biochem. , 1998 ,257 (2) : 195 —202
[25 ]  Wuhrer M, Deelder A M. Rapid Commun. Mass Spectrom. , 2006 ,20 : 943 —951
[26 ]  Yamagaki T, Mitsuishi Y, Nakanishi H. Tetrahedron Letts. , 1998 ,39 (35) : 4051 —4054
[27 ]  Viseux N , Costello C E , Domon B. Mass Spectrometry , 1999 , 34(4) : 364 —376
[28 ]  Yamagaki T, Nakanishi H. Analytical Sciences , 2001 , 17 (1) : 83 —87
[29 ]  Spina E , Cozzolino R , Ryan E , Garozzo D. Mass Spectrometry ,2000 , 35 (8) : 1042 —1048
[30 ]  Kuster B , Naven T J , Harvey D J . Journal of Mass Spectrometry ,1996 , 31 (10) : 1131 —1140
[31 ]  Mechref Y, Novotny M V. Analytical chemistry , 1998 , 70 ( 3) :455 —463
[32 ]  Papac D I , Briggs J B , Chin E T, et al . Glycobiology , 1998 , 8 (5) :445 —454
[33 ]  Kuster B , Wheeler S F , Hunter A P , et al . Analytical Biochemistry ,1997 , 250 (1) : 82 —101
[34 ]  Lattova E , Varma S , Bezabeh T, et al . American Society for Mass Spectrometry , 2008 , 19 : 671 —685
[35 ]  Harmon B J , Gu X J , Wang D I C , et al . Analytical Chemistry ,1996 , 68 (9) : 1465 —1473
[36 ]  Kuster B , Mann M. Analytical chemistry , 1999 , 71 (7) : 1431 —1440
[37 ]  Mills K, Johnson A W. Tetrahedron Asym. , 2000 , 11 (1) : 75 —93
[38 ]  An H J , Peavy T R , Hedrick J L , Lebrilla C B. Analytical Chemistry , 2003 , 75 (20) : 5628 —5637
[39 ]  Rademaker GJ , Pergantis S A. Analytical biochemistry , 1998 , 257(2) : 149 —160
[40 ]  Wang Z F , Reinhold V. Glycobiology , 2003 , 13 (11) : 849

[1] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[6] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[7] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[8] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[9] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[10] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[13] 顾顺心, 姜琴, 施鹏飞. 发光铱(Ⅲ)配合物抗肿瘤活性研究及应用[J]. 化学进展, 2022, 34(9): 1957-1971.
[14] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[15] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.