English
新闻公告
More
化学进展 2009, Vol. 21 Issue (6): 1154-1163 前一篇   后一篇

• 综述与评论 •

分子整流的实验与理论研究进展*

刘洪梅;赵健伟**   

  1. (南京大学化学化工学院 生命分析化学教育部重点实验室 南京 210008)
  • 收稿日期:2008-07-23 修回日期:2008-10-07 出版日期:2009-06-24 发布日期:2009-06-16
  • 通讯作者: 赵健伟 E-mail:zhaojw@nju.edu.cn
  • 基金资助:

    20503012;20435010;20521503;国家自然科学基金

Experimental and Theoretical Study of Molecular Rectification

Liu Hongmei |Zhao Jianwei**   

  1. (Key Laboratory of Analytical Chemistry for Life Science, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210008, China)
  • Received:2008-07-23 Revised:2008-10-07 Online:2009-06-24 Published:2009-06-16
  • Contact: Zhao Jianwei E-mail:zhaojw@nju.edu.cn

分子电子器件的思想始于20世纪70年代,分子整流的研究在30多年中取得了显著进展,包括分子结构设计、实验测量以及理论模拟。本文简述了分子整流的发展历程,介绍了被广泛研究的分子整流体系以及分子水平整流机理,包括D-σ-A型、D-π-A型、D-A型、构象转变和界面引起的整流,以及负微分电阻现象。最后提出了分子整流研究中存在的一些问题,并展望了分子整流的研究和发展方向。

The field of molecular electronics was initiated in 1970s, when Aviram and Ratner proposed a concept for a molecular rectifier based on a single organic molecule. The molecular rectification has received great progress in the latest 30 years, both in experimental measurement and theoretical simulation. In this paper, we review the recent investigation on molecular rectification, both of molecular structures and rectification mechanisms. Several rectification mechanisms have been summarized, such as D-σ-A, D-π-A and D-A types, rectification induced by conformation reverse and interface. The negative differential resistance is also addressed, which is induced by charging, conformational flexibility, intermolecular charge transfer, molecular double dot, and the polaron mechanism. Finally, the problems and challenges in the study of molecular rectification are proposed.

Contents
1 Introduction
2 Experimental measurements
3 Mechanisms of molecular rectification
3.1 D-σ-A type of molecular rectification
3.2 D-π-A type of molecular rectification
3.3 D-A type of molecular rectification
3.4 Molecular rectification induced by conformation reverse
3.5 Molecular Rectification induced by interface
3.6 Negative differential resistance
4 Conclusion and prospective

中图分类号: 

()

[ 1 ]  Aviram A , Ratner M A. Chem. Phys. Lett . , 1974 , 29 : 277 —283
[ 2 ]  Ashwell G J , Sambles J R , Martin A S , et al . J . Chem. Soc.Chem. Commun. , 1990 , 19 : 1374 —1376
[ 3 ]  Martin A S , Sambles J R , Ashwell GJ . Phys. Rev. Lett . , 1993 ,70 : 218 —221
[ 4 ]  Ashwell GJ , Tyrrell WD , Whittam A J . J . Mater. Chem. , 2003 ,13 : 2855 —2857
[ 5 ]  Ng M K, Lee D C , Yu L P. J . Am. Chem. Soc. , 2002 , 124 :11862 —11863
[ 6 ]  Jiang P , Morales GM, Yu L P , et al . Angew. Chem. Int . Ed. ,2004 , 43 : 4471 —4475
[ 7 ]  Morales GM, Jiang P , Yu L P , et al . J . Am. Chem. Soc. , 2005 ,127 : 10456 —10457
[ 8 ]  Liang Y Y, Wang H B , Yu L P , et al . J . Mater. Chem. , 2007 ,17 : 2183 —2194
[ 9 ]  Weibel N , Grunder S , Mayor M. Org. Biomol . Chem. , 2007 , 5 :2343 —2353
[10 ]  Wu G, Li B. Phys. Rev. B , 2007 , 76 : art . no. 085424
[11 ]  Metzger R M, Baldwin J W, Shumate WJ , et al . J . Phys. Chem.B , 2003 , 107 : 1021 —1027
[12 ]  Honciuc A , Jaiswal A , Gong A , et al . J . Phys. Chem. B , 2005 ,109 : 857 —871
[13 ]  Shumate WJ , Mattern D L , Jaiswal A , et al . J . Phys. Chem. B ,2006 , 110 : 11146 —11159
[14 ]  Wold D J , Haag R , Rampi MA , et al . J . Phys. Chem. B , 2002 ,106 : 2813 —2816
[15 ]  Metzger R M. Chem. Rev. , 2003 , 103 : 3803 —3834
[16 ]  Datta S. Electronic Transport in Mesoscopic Systems. New York :Cambridge University Press , 1996
[17 ]  Troisi A , Ratner M A. Phys. Rev. B , 2005 , 72 : art . no. 033408
[18 ]  Taylor J , Guo H , Wang J . Phys. Rev. B , 2001 , 63 : art . no.245407
[19 ]  Stokbro K, Taylor J , Brandbyge M. J . Am. Chem. Soc. , 2003 ,125 : 3674 —3675
[20 ]  Staykov A , Nozaki D , Yoshizawa K. J . Phys. Chem. C , 2007 ,111 : 11699 —11705
[21 ]  Li Z Y, Kosov D S. J . Phys. Chem. B , 2006 , 110 : 9893 —9898
[22 ]  Li Z Y, Kosov D S. J . Phys. Chem. B , 2006 , 110 : 19116 —19120
[23 ]  Yin X, Liu HM, Zhao J W. J . Chem. Phys. , 2006 , 125 : art . no.094711
[24 ]  Yin X, Li YW, Zhang Y, et al . Chem. Phys. Lett . , 2006 , 422 :111 —116
[25 ]  Liu H M, Zhao J W, Yin X, et al . J . Chem. Phys. , 2008 : 129 :art . no. 224704
[26 ]  Blodgett KB. J . Am. Chem. Soc. , 1935 , 57 : 1007 —1022
[27 ]  Polymeropoulos E E , Mêbius D , Kuhn H. Thin Solid Films , 1980 ,68 : 173 —190
[28 ]  Fujihira M, Nishiyama K, Yamada H. Thin Solid Films , 1985 , 132 :77 —82
[29 ]  Metzger R M. Synthetic Met . , 2003 , 137 : 1499 —1501
[30 ]  Metzger R M. Anal . Chim. Acta , 2006 , 568 : 146 —155
[31 ]  Ulman A. Chem. Rev. , 1996 , 96 : 1533 —1544
[32 ]  Zhao J , Zeng C G, Yang J L , et al . Phys. Rev. Lett . , 2005 , 95 :art . no. 045502
[33 ]  Mann B , Kuhn H. J . Appl . Phys. , 1971 , 42 : 4398 —4405
[34 ]  Wu D G, Ghabboun J , Cahen D , et al . J . Phys. Chem. B , 2001 ,105 : 12011 —12018
[35 ]  Holmlin R E , Ismagilov R F , Haag R , et al . Angew. Chem. Int .Ed. , 2001 , 40 : 2316 —2320
[36 ]  Wang B , Zhou Y S , Ding X L , et al . J . Phys. Chem. B , 2006 ,110 : 24505 —24512
[37 ]  Zhao J W, Davis J J , Sansom M S P , et al . J . Am. Chem. Soc. ,2004 , 126 : 5601 —5609
[38 ]  Zhao J , Uosaki K. J . Phys. Chem. B , 2004 , 108 : 17129 —17135
[39 ]  Zhao J W, Davis J J . Nanotechnology , 2003 , 14 : 1023 —1028
[40 ]  Jiao L Y, Xian X J , Liu Z F , et al . J . Phys. Chem. C , 2008 ,112 : 7544 —7546
[41 ]  Haiss W, Nichols R J , van Zalinge H , et al . Phys. Chem. Phys.Chem. , 2004 , 6 : 4330 —4337
[42 ]  Xu B Q , Xiao X Y, Tao N J . J . Am. Chem. Soc. , 2003 , 125 :16164 —16165
[43 ]  Elbing M, Ochs R , Koentopp M, et al . P. Natl . Acad. Sci . USA ,2005 , 102 : 8815 —8820
[44 ]  Metzger R M, Chen B , Hêpfner U , et al . J . Am. Chem. Soc. ,1997 , 119 : 10455 —10466
[45 ]  Chen B , Metzger R M. J . Phys. Chem. B , 1999 , 103 : 4447 —4451
[46 ]  Metzger R M, Xu T, Peterson I R. J . Phys. Chem. B , 2001 , 105 :7280 —7290
[47 ]  Jaiswal A , Amaresh R R , Metzger R M, et al . Langmuir , 2003 ,19 : 9043 —9050
[48 ]  NgM K, Yu L P. Angew. Chem. Int . Ed. , 2002 , 41 : 3598 —3601
[49 ]  Oleynik I I , Kozhushner M A , Yu L P , et al . Phys. Rev. Lett . ,2006 , 96 : art . no. 096803
[50 ]  Mukherjee B , Pal A J . Chem. Phys. Lett . , 2005 , 416 : 289 —292
[51 ]  Mukherjee B , Mohanta K, Pal A J . Chem. Mater. , 2006 , 18 :3302 —3307
[52 ]  Ellenbogen J C , Love J C. Proc. IEEE , 2000 , 88 : 386 —426
[53 ]  Nishino T, Ito T, Umezawa Y. Proceed. Natl . Acad. Sci . USA ,2005 , 102 : 5659 —5662
[54 ]  Esfarjani K, Farajian A A , Hashi Y, et al . Appl . Phys. Lett . ,1999 , 74 : 79 —81
[55 ]  Troisi A , Ratner M A. J . Am. Chem. Soc. , 2002 , 124 : 14528 —14529
[56 ]  Troisi A , Ratner M A. Nano Lett . , 2004 , 4 : 591 —595
[57 ]  Ashwell GJ , Gandolfo D S. J . Mater. Chem. , 2002 , 12 : 411 —415
[58 ]  Yasuda S , Nakamura T, Matsumoto M, et al . J . Am. Chem. Soc. ,2003 , 125 : 16430 —16433
[59 ]  Chang S C , Li Z Y, Lau C N , et al . Appl . Phys. Lett . , 2003 , 83 :3198 —3200
[60 ]  Zhao J W, Davis J J . Colloid Surf . B-Biointerfaces , 2005 , 40 :189 —194
[61 ]  Taylor J , Brandbyge M, Stokbro K. Phys. Rev. Lett . , 2002 , 89 :art . no. 138301
[62 ]  Meir Y, Wingreen N S. Phys. Rev. Lett . , 1992 , 68 : 2512 —2515
[63 ]  Tivanski A V , He Y F , Borguet E , et al . J . Phys. Chem. B ,2005 , 109 : 5398 —5402
[64 ]  Zhao Y, Pérez-Segarra W, Shi Q , et al . J . Am. Chem. Soc. ,2005 , 127 : 7328 —7329
[65 ]  Wei Z, Kondratenko M, Dao L H , et al . J . Am. Chem. Soc. ,2006 , 128 : 3134 —3135
[66 ]  Chen J , Reed M A , Rawlett A M, et al . Science , 1999 , 286 :1550 —1552
[67 ]  Chen J , Reed M A. Chem. Phys. , 2002 , 281 : 127 —145
[68 ]  Seminario J M, Zacarias A G, Tour J M. J . Am. Chem. Soc. ,2000 , 122 : 3015 —3020
[69 ]  Taylor J , Brandbyge M, Stokbro K. Phys. Rev. B , 2003 , 68 : art .no. 121101
[70 ]  Luo Y, Wang C K, Fu Y. J . Chem. Phys. , 2002 , 117 : 10283 —10290
[71 ]  Long MQ , Chen KQ , Wang L L , et al . Appl . Phys. Lett . , 2008 ,92 : art . no. 243303
[72 ]  Cornil J , Karzazi Y, Brédas J L. J . Am. Chem. Soc. , 2002 , 124 :3516 —3517
[73 ]  Karzazi Y, Cornil J , Brédas J L. Nanotechnology , 2003 , 14 : 165 —171
[74 ]  Di Ventra M, Kim S G, Pantelides S T, et al . Phys. Rev. Lett . ,2001 , 86 : 288 —291
[75 ]  Bandyopadhyay A , Wakayama Y. Appl . Phys. Lett . , 2007 , 90 :art . no. 023512
[76 ]  Geng H , Hu Y, Shuai Z, et al . J . Phys. Chem. C , 2007 , 111 :19098 —19102
[77 ]  Liu R , Ke S H , Baranger H U , et al . J . Am. Chem. Soc. , 2006 ,128 : 6274 —6275
[78 ]  Galperin M, Ratner M A , Nitzan A. Nano Lett . , 2005 , 5 : 125 —130
[79 ]  Souza A S , Sumpter B G, Meunier V , et al . J . Phys. Chem. C ,2008 , 112 : 12008 —12011
[80 ]  Rao J L. Cent . Eur. J . Chem. , 2007 , 5 : 793 —812
[81 ]  Stadler R , Geskin V , Cornil J . Adv. Funct . Mater. , 2008 , 18 :1 —12

[1] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[2] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[3] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[4] 孔祥瑞, 窦静, 陈淑贞, 汪冰冰, 吴志军. 同步辐射技术在大气科学领域的研究进展[J]. 化学进展, 2022, 34(4): 963-972.
[5] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[6] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[7] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[8] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[9] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[10] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[11] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[12] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[13] 徐佑森, 张振, 唐彪, 周国富. 基于Ti3C2-MXene的太阳能界面水汽转换[J]. 化学进展, 2021, 33(11): 2033-2055.
[14] 程淑敏, 杜林, 张秀辉, 葛茂发. Langmuir单分子膜在海洋飞沫气溶胶表面特性研究中的应用[J]. 化学进展, 2021, 33(10): 1721-1730.
[15] 薛銮栾, 李会增, 李安, 赵志鹏, 宋延林. 基于各向异性表面的液滴驱动[J]. 化学进展, 2021, 33(1): 78-86.
阅读次数
全文


摘要

分子整流的实验与理论研究进展*