English
新闻公告
More
化学进展 2009, Vol. 21 Issue (12): 2744-2752 前一篇   后一篇

• 综述与评论 •

一种应用前景可观的新能源材料——尖晶石型Li4Ti5O12 *

黄彦1;张俊英1**;张中太2;唐子龙2   

  1. (1. 北京航空航天大学理学院 材料物理与化学研究中心  北京 100191; 2. 清华大学材料科学与工程系 新型陶瓷与精细工艺国家重点实验室  北京100084)
  • 收稿日期:2008-12-15 修回日期:2009-03-09 出版日期:2009-12-24 发布日期:2009-12-01
  • 通讯作者: 张俊英 E-mail:zjy@buaa.edu.cn
  • 基金资助:

    863项目

A Promising New Energy Material——Spinel Lithium Titanate

Huang Yan1;   Zhang Junying1**;  Zhang Zhongtai2;  Tang Zilong2   

  1. (1. Center of Materials Physics and Chemistry, School of Science, Beihang University, Beijing 100191, China;2. State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China)
  • Received:2008-12-15 Revised:2009-03-09 Online:2009-12-24 Published:2009-12-01
  • Contact: Zhang Junying E-mail:zjy@buaa.edu.cn

各种锂离子电池电极材料作为十分重要的新能源材料近些年来受到前所未有的广泛关注。负极材料尖晶石型Li4Ti5O12由于其特殊的“零应变”性等优良性质越来越多地受到研究者的青睐,成为一种应用前景可观的锂离子电池用负极材料。同时,其很多性能也很符合电动汽车用储能器件对电极材料的要求,也被研究用于新近提出的非对称超级电容器中。本文介绍了Li4Ti5O12的结构和性能;从制备方法(溶胶-凝胶法、固相合成法等)、掺杂改性和与其他材料复合等几个方面介绍了国内外关于Li4Ti5O12的制备和改性方面的研究进展;并对Li4Ti5O12在各种器件中的应用研究进展做了介绍。

As important new energy materials, many kinds of Li-ion battery electrode materials have aroused unprecedented wide concern. The negative electrode material—spinel Li4Ti5O12 has been paid more and more attentions by researchers due to its many excellent properties such as “zero-strain”. In the meantime, some of these properties also meet the requirements of electrode materials used in electric automobile’s energy storage cell, and hence they are also used in the research of Asymmetric Hybrid Super Capacitors. This paper reviews the structure and properties of Li4Ti5O12, explores researches at home and broad from the aspects of preparation method(sol-gel, solid-state reaction. etc), modification by doping and composing with other materials and so on. The application research progress of this material in all kinds of storage cells is also introduced.

Contents
1 The structure and Li+ insertion mechanism of LTO
2 Preparation methods of LTO
2.1 Sol-gel method
2.2 Process optimization of solid-state synthesis for LTO
2.3 The other preparation methods 3 Various LTO with different morphologies
3.1 LTO with typical morphology
3.2 LTO with porous structure
3.3 LTO nanotube/nanowire and flower-like spinel LTO
4 The reseaches on improving the electronic conductivity of LTO
4.1 Composing with some other materials
4.2 Modification by dopping
5 Application of LTO in various kinds of storage cells
5.1 Li-ion battery with LTO anode
5.2 Application of LTO in asymmetric hybrid energy cell
6 Prospects

中图分类号: 

()

[ 1 ]  Kubiak P , Garcia A , Womes M, et al . Journal of Power Sources ,2003 , 119 : 626 —630
[ 2 ]  Ohzuku T, Ueda A , Yamamoto N. Journal of the Electrochemical Society , 1995 , 142 (5) : 1431 —1435
[ 3 ]  Ferg E , Gummow R J , Dekock A , et al . Journal of the Electrochemical Society , 1994 , 141 (11) : 147 —150
[ 4 ]  Zhong ZM. Electrochemic and Solid State Letters , 2007 , 10 (12) :267 —269
[ 5 ]  Sorensen E M, Barry S J , Jung H K, et al . Chemistry of Materials ,2006 , 18 (6) : 1713 —1713
[ 6 ]  Du P A , Laforgue A , Simon P , et al . Journal of the Electrochemical Society , 2002 , 149 (3) : 302 —306
[ 7 ]  Venkateswarlu M, Chen C H , Do J S , et al . Journal of Power  Sources , 2005 , 146 (1P2) : 204 —208
[ 8 ]  Huang J J , Jiang Z Y. Electrochimica Acta , 2008 , 53 (2) : 7756 —7759
[ 9 ]  Hao YJ , Lai Q Y, Liu D Q , et al . Materials Chemistry and Physics , 2005 , 94 (2/3) : 382 —387
[10 ]  Hao YJ , Lai Q Y, Lu J Z, et al . Journal of Power Sources , 2006 ,158 (2) : 1358 —1364
[11 ]  Matsui E , Abe Y, Senna M, et al . Journal of the American Ceramic Society , 2008 , 91 (5) : 1522 —1527
[12 ]  Guerfi A , Sevigny S , Lagace M, et al . Journal of Power Sources ,2003 , 119 : 88 —94
[13 ]  Li Y, Zhao H L , Tian Z H , et al . Rare Metals , 2008 , 27 (2) :165 —169
[14 ]  Abe Y, Matsui E , Senna M. Journal of Physics and Chemistry of Solids , 2007 , 68 (5/6) : 681 —686
[15 ]  Cheng L , Liu HJ , Zhang J J , et al . Journal of the Electrochemical Society , 2006 , 153 (8) : 1472 —1477
[16 ]  Yang L H , Dong C , Guo J . Journal of Power Sources ,2008 , 175(1) : 575 —580
[17 ]  Li J R , Tang Z L , Zhang Z T. Electrochemical Communication ,2005 , 7 (9) : 894 —899
[18 ]  KimJ , Cho J . Electrochemic and Solid State Letters , 2007 , 10 (3) :81 —84
[19 ]  Tang Y F , Yang L , Qiu Z, et al . Electrochemical Communication ,2008 , 10 (10) : 1513 —1516
[20 ]  Jiang C H , Zhou Y, Honma I , et al . Journal of Power Sources ,2007 , 166 (2) : 514 —518
[21 ]  Gao J , Jiang C Y, Ying J R , et al . Journal of Power Sources , 2006 ,155 (2) : 364 —367
[22 ]  Kanamura K, Chiba T, Dokko K. Journal of The European Ceramic Society , 2006 , 26 (4/5) : 577 —581
[23 ]  Wen Z Y, Gu Z H , Huang S H , et al . Journal of Power Sources ,2005 , 146 (1/2) : 670 —673
[24 ]  Hsiao KC , Liao S C , Chen J M. Electrochimica Acta , 2008 , 53(24) : 7242 —7247
[25 ]  Huang S H , Wen Z Y, Zhu X J , et al . Electrochemical Communication , 2004 , 6 (11) : 1093 —1097
[26 ]  Wen Z Y, Yang X F , Huang S H. Journal of Power Sources , 2007 ,174 (2) : 1041 —1045
[27 ]  Huang S H , Wen Z Y, Lin B , et al . Journal of Alloys and Compounds , 2008 , 457 (1/2) : 400 —403
[28 ]  Huang S H , Wen Z Y, Zhu X J , et al . Journal of the Electrochemical Society , 2005 , 152 (11) : 15 —15
[29 ]  Wolfenstine J , Lee U , Allen J L. Journal of Power Sources , 2006 ,154 (1) : 287 —289
[30 ]  Dominko R , Gaberscek M, Bele A , et al . Journal of The European Ceramic Society , 2007 , 27 (2P3) : 909 —913
[31 ]  Dominko R , Gaberscek M, Drofenik J , et al . Electrochemical and Solid State Letters , 2001 , 4 (11) : 187 —190
[32 ]  Wang GJ , Gao J , Fu L J , et al . Journal of Power Sources , 2007 ,174 (2) : 1109 —1112
[33 ]  Cheng L , Li X L , Liu H J , et al . Journal of the Electrochemical Society , 2007 , 154 (7) : 692 —697
[34 ]  Snyder M Q , Desisto W J , Tripp C P. Applied Surface Science ,2007 , 253 (24) : 9336 —9341
[35 ]  Liu D T, Ouyang C Y, Shu J , et al . Physica Status Solidi B-Basic Solid State Physics , 2006 , 243 (8) : 1835 —1841
[36 ]  Chen C H , Vaughey J T, Jansen A N , et al . Journal of the Electrochemical Society , 2001 , 148 (1) : 102 —104
[37 ]  Martin P , Lopez L , Pico C , et al . Solid State Science , 2007 , 9 (6) :521 —526
[38 ]  Robertson A D , Trevino L , Tukamoto H , et al . Journal of Power Sources , 1999 , 81 : 352 —357
[39 ]  Hao Y J , Lai Q Y, Lu J Z, et al . Ionics , 2007 , 13 (5) : 369 —373
[40 ]  Zhao H L , Li Y, Zhu Z M, et al . Electrochimica Acta , 2008 , 53 :7079 —7083
[41 ]  Capsoni D , Bini M, Massarotti V , et al . Chemistry of Materials ,2008 , 20 (13) : 4291 —4298
[42 ]  Wolfenstine J , Allen J L. Journal of Power Sources , 2008 , 180 (1) :582 —585
[43 ]  Tarascon J M, Armand M. Nature , 2001 , 414 (6861) : 359 —367
[44 ]  Christensen J , Srinivasan V , Newman J . Journal of the Electrochemical Society , 2006 , 153 (3) : 560 —565
[45 ]  Levi M D , Gamolsky K, Aurbach D , et al . Journal of the Electrochemical Society , 2000 , 147 (1) : 25 —33
[46 ]  Plitz I , Dupasquier A , Badway F , et al . Applied Physics A-Material Science & Processing , 2006 , 82 (4) : 615 —626
[47 ]  Franger S , Bourbon C , Le C F. Journal of the Electrochemical Society , 2004 , 151 (7) : 1024 —1027
[48 ]  Amine K, Tukamoto H , Yasuda H , et al . Journal of Power Sources ,1997 , 68 (2) : 604 —608
[49 ]  Zhong Q M, Bonakdarpour A , Zhang M J , et al . Journal of the Electrochemical Society , 1997 , 144 (1) : 205 —213
[50 ]  Reale P , Panero S , Scrosati B. Journal of the Electrochemical Society , 2005 , 152 (10) : 1949 —1954
[51 ]  Patoux S , Sannier L , Lignier H , et al . Electrochimica Acta , 2008 ,53 (12) : 4137 —4145
[52 ]  Burke A. Journal of Power Sources , 2000 , 91 (1) : 37 —50
[53 ]  Amatucci G G, Badway F , Du P A , et al . Journal of Power Sources ,2001 , 148 (8) : 930 —939
[54 ]  Du P A , Laforgue A , Simon P. Journal of Power Sources , 2004 , 125(1) : 95 —102
[55 ]  Du P A , Plitz I , Gural J , et al . Journal of Power Sources , 2004 ,136 (1) : 160 —170
[56 ]  Hu X, Huai Y, Lin Z, et al . Journal of Power Sources , 2007 , 154(11) : 1026 —1030
[57 ]  Zheng J P. Journal of the Electrochemical Society , 2003 , 150 (4) :484 —492

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[5] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[8] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[9] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[10] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[11] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[12] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
[13] 张伟, 齐小鹏, 方升, 张健华, 史碧梦, 杨娟玉. 碳在锂离子电池硅碳复合材料中的作用[J]. 化学进展, 2020, 32(4): 454-466.
[14] 陈豪登, 徐建兴, 籍少敏, 姬文晋, 崔立峰, 霍延平. MOFs衍生金属氧化物及其复合材料在锂离子电池负极材料中的应用[J]. 化学进展, 2020, 32(2/3): 298-308.
[15] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.