English
新闻公告
More
化学进展 2009, Vol. 21 Issue (11): 2435-2444 前一篇   后一篇

• 《化学进展》创刊20周年纪念专辑 •

物质在纳米限域空间中的新现象*

王志永;施祖进**;顾镇南   

  1. (北京分子科学国家实验室 稀土材料化学及应用国家重点实验室 北京大学化学与分子工程学院 北京 100871)
  • 收稿日期:2009-04-29 出版日期:2009-11-24 发布日期:2009-10-09
  • 通讯作者: 施祖进 E-mail:zjshi@pku.edu.cn
  • 基金资助:

    单层和双层碳纳米管的填充及性质研究;碳纳米管的生长机制与结构调控研究;与硅基工艺兼容的碳纳米管互连技术

New Phenomena of Materials Confined in Nano Space

Wang Zhiyong ; Shi Zujin ** ; Gu Zhennan   

  1. (Beijing National Laboratory for Molecular Sciences, State Key Lab of  Rare Earth Materials Chemistry and Application, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China)
  • Received:2009-04-29 Online:2009-11-24 Published:2009-10-09
  • Contact: Shi Zujin E-mail:zjshi@pku.edu.cn

碳纳米管是具有中空结构的一维纳米材料,其直径一般在约1nm到数十纳米之间。以碳纳米管作为“纳米容器”,在其内部可以填充各种物质。由于碳纳米管的限域作用,填充在碳纳米管中的物质具有新的结构与性质。本文总结了填充碳纳米管的常用方法,并重点介绍了填充物在碳纳米管内的结构、相变、稳定性与振动性质,以及碳纳米管内的纳米空间中发生的化学反应,最后对这一领域的发展趋势作了展望。

Carbon nanotubes are one-dimensional materials with hollow structures, the diameters of which are usually in the range of ~1 nanometer to several tens of nanometers. Carbon nanotubes can be used as “nano containers” to encapsulate guest molecules in their inteior nano space. Because of spatial confinement effect of carbon nanotube walls, the encapsulated materials exhibit peculiar structures and properties. In this review, we introduce the methods for filling carbon nanotubes and discuss the structures, phase transitions, stabilities and vibrational properties of the encapsulated materials as well as chemical reactions inside carbon nanotubes. The future directions for research in this field are also discussed.

Contents
1 Introduction
2 Methods of filling carbon nanotubes
2.1 In situ filling
2.2 Gas method
2.3 Liquid method
3 Structure and properties of the encapsulated materials
3.1 Structure and phase transition of the encapsulated materials
3.2 Stability of the encapsulated materials
3.3 Vibrational properties of the encapsulated materials
3.4 Chemical reactions inside carbon nanotubes
4 Conclusion and perspectives

中图分类号: 

()

[ 1 ]  Iijima S. Nature , 1991 , 354 : 56 —58
[ 2 ]  Pederson M R , Broughton J Q. Phys. Rev. Lett . , 1992 , 69 :2689 —2692
[ 3 ]  Ajayan P M, Iijima S. Nature , 1993 , 361 : 333 —334
[ 4 ]  Dujardin E , Ebbesen T W, Hiura H , et al . Science , 1994 , 265 :1850 —1852
[ 5 ]  Sloan J , Hammer J , Zwiefka-Sibley M, et al . Chem. Commun. ,1998 , 347 —348
[ 6 ]  Smith B W, Monthioux M, Luzzi D E. Nature , 1998 , 396 : 323 —324
[ 7 ]  Burteaux B , Claye A , Fischer J E , et al . Chem. Phys. Lett . ,1999 , 310 : 21 —24
[ 8 ]  Loiseau A , Pascard H. Chem. Phys. Lett . , 1996 , 256 : 246 —252
[ 9 ]  Terrones M, Hsu W K, Schilder A , et al . Appl . Phys. A , 1998 ,66 : 307 —317
[10 ]  Terrones M, Grobert N , Zhang J P , et al . Chem. Phys. Lett . ,1998 , 285 : 299 —305
[11 ]  Guan L H , Shi Z J , Li H J , et al . Chem. Commun. , 2004 , 1988 —1989
[12 ]  Rao C N R , Sen R , Satishkumar B C , et al . Chem. Commun. ,1998 , 1525 —1526
[13 ]  Smith B W, Luzzi D E. Chem. Phys. Lett . , 2000 , 321 : 169 —174
[14 ]  Hirahara K, Suenaga K, Bandow S , et al . Phys. Rev. Lett . , 2000 ,85 : 5384 —5387
[15 ]  Guan L H , Shi Z J , Li M X, et al . Carbon , 2005 , 43 : 2780 —2785
[16 ]  Brown G, Bailey S R , Sloan J , et al . Chem. Commun. , 2001 ,845 —846
[17 ]  Chancolon J , Archaimbault F , Pineau A , et al . J . Nanosci .Nanotechnol . , 2006 , 6 : 82 —86
[18 ]  Costa P , Sloan J , Rutherford T, et al . Chem. Mater. , 2005 , 17 :6579 —6582
[19 ]  Sloan J , Kirkland A I , Hutchison J L , et al . Acc. Chem. Res. ,2002 , 35 : 1054 —1062
[20 ]  Sloan J , Luzzi D E , Kirkland A I , et al . MRS Bull . , 2004 , 29 :265 —271
[21 ]  Simon F , Kuzmany H , Rauf H , et al . Chem. Phys. Lett . , 2004 ,383 : 362 —367
[22 ]  Liu Z, Koshino M, Suenaga K, et al . Phys. Rev. Lett . , 2006 , 96 :art . no. 088304
[23 ]  Schebarchov D , Hendy S C. Nano Lett . , 2008 , 8 : 2253 —2257
[24 ]  Monthioux M, Flahaut E , Cleuziou J P. J . Mater. Res. , 2006 , 21 :2774 —2793
[25 ]  Hirahara K, Bandow S , Suenaga K, et al . Phys. Rev. B , 2001 ,64 : art . no. 115420
[26 ]  Hodak M, Girifalco L A. Phys. Rev. B , 2003 , 67 : art . no.075419
[27 ]  Qiu H X, Shi Z J , Zhang S L , et al . Solid State Commun. , 2006 ,137 : 654 —657
[28 ]  Okada S , Otani M, Oshiyama A. New J . Phys. , 2003 , 5 : art no.122
[29 ]  Troche K S , Coluci V R , Braga S F , et al . Nano Lett . , 2005 , 5 :349 —355
[30 ]  Guan L H , Li H J , Shi Z J , et al . Solid State Commun. , 2005 ,133 : 333 —336
[31 ]  Smith B W, Luzzi D E , Achiba Y. Chem. Phys. Lett . , 2000 , 331 :137 —142
[32 ]  Sato Y, Suenaga K, Okubo S , et al . Nano Lett . , 2007 , 7 : 3704 —3708
[33 ]  Khlobystov A N , Porfyrakis K, Kanai M, et al . Angew. Chem. Int .Ed. , 2004 , 43 : 1386 —1389
[34 ]  Suenaga K, Taniguchi R , Shimada T, et al . Nano Lett . , 2003 , 3 :1395 —1398
[35 ]  Sato W, Sueki K, Kikuchi K, et al . Phys. Rev. Lett . , 1998 , 80 :133 —136
[36 ]  Urita K, Sato Y, Suenaga K, et al . Nano Lett . , 2004 , 4 : 2451 —2454
[37 ]  Sloan J , Novotny M C , Bailey S R , et al . Chem. Phys. Lett . ,2000 , 329 : 61 —65
[38 ]  Meyer R R , Sloan J , Dunin-Borkowski R E , et al . Science , 2000 ,289 : 1324 —1326
[39 ]  Costa P , Friedrichs S , Sloan J , et al . Chem. Mater. , 2005 , 17 :3122 —3129
[40 ]  Meunier V , Muramatsu H , Hayashi T, et al . Nano Lett . , 2009 , 9 :1487 —1492
[41 ]  Fan X, Dickey E C , Eklund P C , et al . Phys. Rev. Lett . , 2000 ,84 : 4621 —4624
[42 ]  Guan L H , Suenaga K, Shi Z J , et al . Nano Lett . , 2007 , 7 :1532 —1535
[43 ]  Wang Z Y, Wang L , Shi Z J , et al . Chem. Commun. , 2008 ,3429 —3431
[44 ]  Koga K, Gao G T, Tanaka H , et al . Nature , 2001 , 412 : 802 —805
[45 ]  Maniwa Y, Kataura H , Abe M, et al . J . Phys. Soc. Jpn. , 2002 ,71 : 2863 —2866
[46 ]  Maniwa Y, Kataura H , Abe M, et al . Chem. Phys. Lett . , 2005 ,401 : 534 —538
[47 ]  Schulte K, Swarbrick J C , Smith N A , et al . Adv. Mater. , 2007 ,19 : 3312 —3316
[48 ]  Liu Z, Yanagi K, Suenaga K, et al . Nat . Nanotechnol . , 2007 , 2 :422 —425
[49 ]  Koshino M, Tanaka T, Suenaga K, et al . Science , 2007 , 316 :853 —853
[50 ]  Guan L H , Suenaga K, Shi Z J , et al . Phys. Rev. Lett . , 2005 ,94 : art no. 045502
[51 ]  Kalbac M, Kavan L , Zukalova M, et al . J . Phys. Chem. B , 2004 ,108 : 6275 —6280
[52 ]  Sun B Y, Sato Y, Shinohara H , et al . J . Am. Chem. Soc. , 2005 ,127 : 17972 —17973
[53 ]  Yanagi K, Miyata Y, Kataura H. Adv. Mater. , 2006 , 18 : 437 —441
[54 ]  Nishide D , Dohi H , Shinohara H , et al . Chem. Phys. Lett . , 2006 ,428 : 356 —360
[55 ]  Wang J W, Kuimova M K, Khlohystov A N , et al . Angew. Chem.Int . Ed. , 2006 , 45 : 5188 —5191
[56 ]  Nishide D , Wakabayashi T, Sugai T, et al . J . Phys. Chem. C ,2007 , 111 : 5178 —5183
[57 ]  Pfeiffer R , Simon F , Kuzmany H , et al . Phys. Rev. B , 2005 , 72 :art no. 161404
[58 ]  Byl O , Liu J C , Yates J T, et al . J . Am. Chem. Soc. , 2006 ,128 : 12090 —12097
[59 ]  Bandow S , Takizawa M, Hirahara K, et al . Chem. Phys. Lett . ,2001 , 337 : 48 —54
[60 ]  Kalbac M, Kavan L , Juha L , et al . Carbon , 2005 , 43 : 1610 —1616
[61 ]  Qiu H X, Shi ZJ , Gu ZN , et al . Chem. Commun. , 2007 , 1092 —1094
[62 ]  Wang Z Y, Zhao K K, Shi Z J , et al . Chin. J . Inorg. Chem. ,2008 , 24 : 1237 —1241
[63 ]  Fujita Y, Bandow S , Iijima S. Chem. Phys. Lett . , 2005 , 413 :410 —414
[64 ]  Bandow S , Hiraoka T, Yumura T, et al . Chem. Phys. Lett . ,2004 , 384 : 320 —325
[65 ]  Guan L H , Suenaga K, Shi Z J , et al . J . Am. Chem. Soc. , 2007 ,129 : 8954 —8955
[66 ]  Guan L H , Suenaga K, Okubo S , et al . J . Am. Chem. Soc. ,2008 , 130 : 2162 —2163
[67 ]  Kitaura R , Imazu N , Kobayashi K, et al . Nano Lett . , 2008 , 8 :693 —699
[68 ]  Britz D A , Khlobystov A N , Porfyrakis K, et al . Chem. Commun. ,2005 , 37 —39
[69 ]  Zhao X W, Jiang P , Chu W G, et al . Carbon , 2006 , 44 : 1310 —1313
[70 ]  Zhang J , Hu Y S , Tessonnier J P , et al . Adv. Mater. , 2008 , 20 :1450 —1455
[71 ]  Chen W, Fan Z L , Pan X L , et al . J . Am. Chem. Soc. , 2008 ,130 : 9414 —9419
[72 ]  Tessonnier J P , Pesant L , Ehret G, et al . Appl . Catal . A , 2005 ,288 : 203 —210

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[3] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[4] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.
[5] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[6] 徐翔, 李坤, 魏擎亚, 袁俊, 邹应萍. 基于非富勒烯小分子受体Y6的有机太阳能电池[J]. 化学进展, 2021, 33(2): 165-178.
[7] 沈赵琪, 程敬招, 张小凤, 黄微雅, 温和瑞, 刘诗咏. P3HT/非富勒烯受体异质结有机太阳电池[J]. 化学进展, 2019, 31(9): 1221-1237.
[8] 姚阳榕, 谢素原. 碳团簇的结构及其演进[J]. 化学进展, 2019, 31(1): 50-62.
[9] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[10] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[11] 徐国华, 李从刚, 刘买利. 类细胞环境下蛋白质结构与功能的NMR研究[J]. 化学进展, 2017, 29(1): 75-82.
[12] 薛丽君, 张迪, 魏杰, 刘欣梅. 催化剂的孔道限域效应[J]. 化学进展, 2016, 28(4): 450-458.
[13] 罗杰, 李朝威, 兰竹瑶, 陈名海, 姚亚刚, 赵岳. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展, 2015, 27(9): 1158-1166.
[14] 万晓梅, 张川, 余定华, 黄和, 胡燚. 碳纳米管固定化酶[J]. 化学进展, 2015, 27(9): 1251-1259.
[15] 宋成杰, 王二静, 董兵海, 王世敏. 非富勒烯类有机小分子受体材料[J]. 化学进展, 2015, 27(12): 1754-1763.
阅读次数
全文


摘要

物质在纳米限域空间中的新现象*