English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0708): 1693-1704 前一篇   

• 综述与评论 •

高温自蔓延技术在环境保护领域中的应用*

朱建新**;陈梦君;张付申   

  1. (中国科学院生态环境研究中心   |北京 |100085)
  • 收稿日期:2008-09-03 修回日期:2008-12-01 出版日期:2009-08-24 发布日期:2009-06-30
  • 通讯作者: 朱建新 E-mail:zhujx@rcees.ac.cn
  • 基金资助:

    50708110;国家自然科学基金

Application of Self-Propagating High Temperature Synthesis for Environmental Protection

Zhu Jianxin** |Chen Mengjun |Zhang Fushen   

  1. (Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China)
  • Received:2008-09-03 Revised:2008-12-01 Online:2009-08-24 Published:2009-06-30
  • Contact: Zhu Jianxin E-mail:zhujx@rcees.ac.cn

高温自蔓延技术具有反应温度高、能量利用效率高、处理过程快速、不需要很大的设备和设施投入等特点,已在环境保护和污染控制领域得到了广泛的关注及研究。本文回顾了近20多年来高温自蔓延技术在环境保护领域应用的研究状况,主要从以下4个方面进行综述:(1) 高温自蔓延技术在固体废物处理处置中的应用;(2) 高温自蔓延技术在高放废物固化稳定化中的应用;(3)高温自蔓延技术在有机污染控制过程中的应用;(4)高温自蔓延技术合成环境功能材料的应用等。文中着重介绍了高温自蔓延技术在各应用领域所取得的理论和工程实践成果,特别是近年来机械诱发自蔓延、全废物型自蔓延和自蔓延废物处理流水线等技术在废物处理和资源回收领域的应用。此外,还指出了环保高温自蔓延研究领域的不足并展望了今后的发展趋势。

Self-propagating high temperature synthesis(SHS) has been receiving increasing research and development attention in environmental protection and pollution control fields due to its high reaction temperature, excellent energy utilization efficiency, low time consumption and low cost for facility construction. During the last twenty years, SHS technology and its applications have undergone great changes and the research achievements are worthy of being summarized systematically. In this paper, the research status on the applications of SHS for environmental protection is reviewed mainly in the following four aspects: (1) SHS in solid waste treatment and disposal; (2) SHS in high level waste solidification and stabilization; (3) SHS in toxic organic pollutant destruction; (4) SHS in environmental function material synthesis, etc. The research achievements in basic theory and engineering application of SHS technology are elaborated with emphasis, especially for the development of mechanically induced SHS, all-wastes SHS and SHS treatment line for waste treatment and resource recovery in recent years. In addition, the deficiencies and the future developing perspectives of SHS are also put forward.

Contents
1 Introduction
2 Reaction characteristic of SHS
2.1 Thermodynamic requirement
2.2 Solid and quasi-solid flame
2.3 Discrete combustion wave
2.4 Ignition technology
3 SHS in solid waste treatment and disposal
3.1 Treatment of steel industry by-products
3.2 Recycling of zinc hydrometallurgical wastes
3.3 Vitrification of incineration fly ash
3.4 Disposal of asbestos wastes
4 SHS in high level waste solidification and stabilization
5 SHS in toxic organic pollutant destruction
6 Synthesis of function materials by wastes
6.1 Conversion of silicon wastes to Sialon-based ceramics
6.2 Synthesis of anti-oxidation ceramics by sand
6.3 Synthesis of ceramic componds utilizing woody wastes
6.4 Synthesis of environmental catalysts
6.5 Synthesis of porous permeable materials
7 Development of SHS in environmental protection
7.1 Mechanically induced SHS
7.2 All-wastes SHS
7.3 SHS treatment line
8 Conclusions

中图分类号: 

()

[ 1 ]  殷声(Yin S) . 燃烧合成(Combustion Synthesis) . 北京: 冶金工业出版社(Beijing: Metallurgical Industry Press) , 2004. 1 —45
[ 2 ]  Merzhanov A G. Combust . Sci . Tech. , 1994 , 98 : 307 —336
[ 3 ]  Merzhanov A G. J . Mater. Chem. , 2004 , 14 : 1779 —1786
[ 4 ]  McCauley J W, Puszynski J A. Int . J . Self-Propagating High-Temperature Synth. , 2008 , 17 : 58 —75
[ 5 ]  Cao G, Orru R , Licheri R , et al . Int . J . Self-Propagating High-Temperature Synth. , 2008 , 17 : 76 —84
[ 6 ]  Vallauri D , Adrian I C A , Chrysanthou A. J . Europ. Ceram. Soc. ,2008 , 28 : 1697 —1713
[ 7 ]  Yeh C L , Chen Y D. Ceram. Int . , 2007 , 33 : 365 —371
[ 8 ]  Carole D , Frety N , Paris S , et al . Ceram. Int . , 2007 , 33 : 1525 —1534
[ 9 ]  KimJ S , Song J H , Chang M G, et al . J . Ceram. Process. Res. ,2007 , 8 : 70 —73
[10 ]  Amosov A P , Bichurov G V , Markov Y M, et al . Refract . Ind.Ceram. , 1997 , 38 : 431 —434
[11 ]  Evtushenko A T, Pazare S , Torbunov S S. Met . Sci . Heat Treat . ,2007 , 49 : 200 —203
[12 ]  傅正义(Fu Z Y) , 金正中(Jin Z Z) , 李琳(Li L) 等. 硅酸盐通报(Bulletin of the Chinese Ceramic Society) , 2001 , 20 : 37 —40
[13 ]  傅正义( Fu Z Y) . 复合材料学报(Acta Materiae Compositae Sinica) , 2000 , 17 : 5 —10
[14 ]  Borovinskaya I P. Int . J . Self-Propagating High-Temperature Synth. , 1998 , 7 : 129 —135
[15 ]  Barinova T V , Borovinskaya I P , Ratnikov V I , et al . Progress in Self-Propagating High-Temperature Synthesis , 2002 , 217 : 193 —199
[16 ]  Orru R , Sannia M, Cincotti A , et al . Chem. Eng. Sci . , 1999 , 54 :3053 —3061
[17 ]  Sannia M, Orru R , Concas A , et al . Ind. Eng. Chem. Res. ,2001 , 40 : 801 —807
[18 ]  Porcu M, Orru R , Cao G. Chem. Eng. J . , 2004 , 99 : 247 —256
[19 ]  Coccol G, Doppiu S , Monagheddu M, et al . Int . J . Self-Propagating High-Temperature Synth. , 1999 , 8 : 521 —526
[20 ]  Porcu M, Orru R , Cincotti A , et al . Ind. Eng. Chem. Res. ,2005 , 44 : 85 —91
[21 ]  Xanthopoulou G, Vekinis G. Adv. Environ. Res. , 2001 , 5 : 117 —128
[22 ]  Moore J J , Feng HJ . Prog. Mater. Sci . , 1995 , 39 : 243 —273
[23 ]  Eslamloo G, Munir Z A. Mater. Sci . Report , 1989 , 3 : 227 —265
[24 ]  Moore J J , Feng H J . Progress in Materials Science , 1995 , 39 :275 —316
[25 ]  Wada T, Kinoshita H. J . Phys. Chem. Solids , 2005 , 66 : 1987 —1989
[26 ]  Merzhanov A G, Mukasyan A S , Rogachev A S , et al . Combust .Explos. Shock Wave , 1996 , 32 : 334 —347
[27 ]  Frolov Y V , Pivkina A N , Aleshin V V. Int . J . Self-Propagating High-Temperature Synth. , 2001 , 10 : 31 —54
[28 ]  Mukasyan A S , Rogachev A S. Prog. Energy Combust . Sci . , 2008 ,34 : 377 —416
[29 ]  余石金(Yu SJ ) , 邹正光(Zhou Z G) , 何曾先(He C X) . 材料科学与工艺(Materials Science and Technology) , 2005 , 13 :139 —142
[30 ]  张化宇(Zhang H Y) , 韩杰才(Han J C) , 郝晓东(Hao X D)等. 复合材料学报(Acta Materiae Compositae Sinica) , 2000 , 17 :69 —72
[31 ]  Seplyarskii B S , Godapolova I S , Int . J . Self2Propagating High-Temperature Synth. , 1993 , 2 : 215 —218
[32 ]  Barzykin V V. Pure &Appl . Chem. , 1992 , 64 : 909 —918
[33 ]  Li Y X, Hu J D , Liu Y H , et al . Mater. Lett . , 2007 , 61 : 4366 —4369
[34 ]  Makino A. Combust . Flame , 2003 , 134 : 273 —288
[35 ]  Peng J H , Binner J , Bradshaw S. Mater. Sci . Technol . , 2002 , 18 :1419 —1427
[36 ]  Jain S R , Rao R , Murthy KN. Combust . Flame , 1988 , 71 : 233 —243
[37 ]  Korchagin M A , Dudina D V. Combust . Explos. Shock Wave ,2007 , 43 : 176 —187
[38 ]  Xu J G, Zhang B L , Jiang G J , et al . Ceram. Int . , 2006 , 32 :633 —636
[39 ]  Kallio M, Ruuskanen P , Maki J , et al . J . Mater. Synth. Process. ,2000 , 8 : 87 —92
[40 ]  Orru R , Cincotti A , Concas A , et al . Environ. Sci . Pollut . Res. ,2003 , 10 (6) : 385 —389
[41 ]  Harada H , Takaoka M, Oshita K, et al . Environ. Eng. Sci . ,2005 , 22 : 716 —724
[42 ]  Barinova T V , Borovinskaya I P , Ratnikov V I , et al . Int . J . Self-Propagating High-Temperature Synth. , 2007 , 16 : 133 —136
[43 ]  Glagovskii E M, Kuprin A V , Pelevin L P , et al . Atom. Energy ,1999 , 87 : 514 —518
[44 ]  Borovinskaya I P , Barinova T V , Ratnikov V I , et al . Int . J . Self-Propagating High-Temperature Synth. , 1998 , 7 : 129 —136
[45 ]  Zhang R Z, Guo Z, Jia C C , et al . Rare Metals , 2005 , 24 : 475 —479
[46 ]  Zhang R Z, Hao J , Guo Z M. J . Univ. Sci . Technol . Beijing ,2005 , 12 : 357 —359
[47 ]  Loiselle S , Branca M, Mulas G, et al . Environ. Sci . Technol . ,1997 , 31 : 261 —265
[48 ]  Mulas G, Loiselle S , Schiffini L , et al . J . Solid State Chem. ,1997 , 129 : 263 —270
[49 ]  Occo G, Doppiu S , Monagheddu M, et al . Int . J . Self-Propagating High-Temperature Synth. , 1999 , 8 : 521 —526
[50 ]  Miyamoto Y, Kanehira S , Hirota K. Int . J . Self-Propagating High-Temperature Synth. , 2000 ,9 : 357 —362
[51 ]  Miyamoto Y. Curr. Opin. Solid State Mat . Sci . , 2003 , 7 : 241 —245
[52 ]  Tomoshige R , Ashitani T, Yatsukawa H , et al . Materials Science Forum , 2003 , 437P438 : 411 —414
[53 ]  Gladoun G. Int . J . Self-Propagating High-Temperature Synth. ,1994 , 3 : 51 —54
[54 ]  Xanthopoulou G, Vekinis G. Appl . Catal . B : Environ. , 1998 , 19 :37 —44
[55 ]  Xanthopoulou G, Vekinis G. Int . J . Self-Propagating High-Temperature Synth. , 1999 , 8 : 287 —298
[56 ]  Xanthopoulou G, Vekinis G. Adv. Environ. Res. , 2001 , 5 : 117 —128
[57 ]  Grigoryan E H. Int . J . Self-Propagating High-Temperature Synth. ,1997 , 6 : 307 —325
[58 ]  Vereshchagin V I , Evstigneev V V , Kolesnikov D V , et al . Refract .Ind. Ceram. , 2005 , 46 : 416 —418
[59 ]  Ayers R A , Burkes D E , Gottoli G, et al . J . Biomed. Mater. Res.Part A , 2007 , 81A: 634 —643
[60 ]  Schaffer GB , Mccormick P G. Scrip. Metall . Mater. , 1989 , 23 :835 —840
[61 ]  McCormick P G. Mater. Trans. J IM, 1995 , 36 (2) : 161 —169
[62 ]  Mulas G, Loiselle S , Schiffini L , et al . J . Solid State Chem. ,1997 , 129 : 263 —270
[63 ]  Saeki S , Kano J , Saito F , et al . J . Mater. Cycles Waste Manag. ,2001 , 3 : 20 —23
[64 ]  Zhang Q , Matsumoto H , Saito F , Bairon M. Chemosphere , 2002 ,48 : 787 —793
[65 ]  Deidda C , Delogu F , Cocco G. J . Mat . Sci . , 2004 , 39 : 5315 —5318
[66 ]  Caschili S , Delogu F , Concas A , et al . Chemosphere , 2006 , 63 :987 —995
[67 ]  Merzhanov A G. Prog. Astronaut . Aeronaut . , 1996 , 173 : 37 —59
[68 ]  Merzhanov A G, Rogachev A S. Russ. J . Phys. Chem. , 2000 , 74 :520 —527
[69 ]  Barzykin V V , Merzhanov A G. Int . J . Self-Propagating High-Temperature Synth. , 1997 , 6 : 377 —398
[70 ]  Ivleva T P , Merzhanov A G. Phys. Rev. , 2001 , 64 : art . no.036218
[71 ]  Mukasyan A S , Rogachev A S. Prog. Energy Combust . Sci . , 2008 ,34 : 377 —416
[72 ]  Glagovsky E M, Kouprine A V , Pelevine L , et al . Czech. J .Phys. , 2003 , 53 : A657 —A663
[73 ]  Orru R , Simoncini B , Carta D , Cao G. Intern. J . SHS , 1997 , 6 :15 —27
[74 ]  Hlavacek V , Puszynski J A. Ind. Eng. Chem. Res. , 1996 , 35 :349 —377
[75 ]  Cao G, Orru R. Chem. Eng. J . , 2002 , 87 : 239 —249

[1] 张原, 祁士华* . 稳定氯同位素分析技术及其在有机氯污染物研究中的应用[J]. 化学进展, 2012, 24(12): 2384-2390.
[2] 王祥云, 陈涛, 刘春立. 高放废物地质处置中的模型[J]. 化学进展, 2011, 23(7): 1400-1410.