English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0708): 1672-1677 前一篇   后一篇

• 综述与评论 •

生物阴极微生物燃料电池*

毛艳萍;蔡兰坤**;张乐华;侯海洋;黄光团;刘勇弟   

  1. (华东理工大学 资源与环境工程学院 |上海 200237)
  • 收稿日期:2008-12-31 修回日期:2009-03-17 出版日期:2009-08-24 发布日期:2009-06-30
  • 通讯作者: 蔡兰坤 E-mail:cailankun@163.com
  • 基金资助:

    华东理工大学引进人才基金资助项目(NO. YB0142114);无

Biocathodes in Microbial Fuel Cells

Mao Yanping|Cai Lankun**|Zhang Lehua|Hou Haiping|Huang Guangtuan; Liu Yongdi   

  1. (School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China)
  • Received:2008-12-31 Revised:2009-03-17 Online:2009-08-24 Published:2009-06-30
  • Contact: Cai Lankun E-mail:cailankun@163.com

传统微生物燃料电池(Microbial fuel cells, MFCs)主要由生物阳极与非生物阴极组成,属于半生物燃料电池,存在化学药剂再生困难、需要铂等贵金属催化及成本高等缺陷。生物阴极则利用微生物参与阴极反应克服了这些缺陷。微生物参与MFCs阴极反应,最初在海底沉积物MFCs中被发现。为了提高空气-生物阴极的产电效率,人们进行了以铁、锰等过渡金属修饰电极材料的研究。在厌/缺氧环境中,生物阴极可将硝酸盐和硫酸盐等作为最终电子受体。对生物阴极材料研究的深入为MFCs工业化应用开辟了道路,此外,本文在文献综述的基础上提出了铁锰联合修饰生物阴极材料的可能性。

Conventional microbial fuel cells (MFCs) consist of biological anodes and abiotic cathodes, which are half-biological fuel cells. The abiotic cathodes usually require a catalyst such as Pt or an electron mediator to enhance power production, increasing the cost and lowering the operational sustainability, or even causing secondary pollution. Such disadvantages can be overcome by biocathodes, which firstly found in marine sediment MFCs. The performance of manganese and iron compounds based oxygen reduction catalysts was studies in view of increasing the biological MFC power output. Moreover, nitrate and sulfate as the terminal electron acceptors can be reduced by anaerobic biocathodes. Biocathodes are promising in MFCs especially after the development of electrode materials, which also lead the industrialization of MFCs possible. The biocathodic electrodes co-modified by manganese and iron compound are proposed in this review.

Contents
1 Introduction
2 Abiotic cathodes
3 Biocathodes
3.1 Aerobic biocathodes
3.2 Anaerobic biocathodes
4 Perspectives
4.1 Aerobic biocathodes co-modified by manganese and iron compounds
4.2 Mechanism of electron transfer in biocathodes
4.3 Industrialization of MFCs with biocathodes

中图分类号: 

()

[ 1 ]  卢娜(Lu N) , 周顺桂(Zhou S G) , 倪晋仁(Ni J R) . 化学进展(Progress in Chemistry) , 2008 , 20 (7/8) : 1233 —1240
[ 2 ]  曹效鑫(Cao X X) , 梁鹏(Liang P) , 黄霞(Huang X) . 环境科学学报(Acta Scientiae Cricumstantiae) , 2006 , 26 (8) : 1252 —1257
[ 3 ]  Cheng S A , Liu H , Logan EB. Environ. Sci . Technol . , 2006 , 40 :364 —369
[ 4 ]  左剑恶(Zuo J E) , 崔龙涛(Cui L T) , 范志明(Fan Z M) 等. 太阳能学报(Acta Energiae Solaris Sinica) , 2007 , 28 (3) : 320 —323
[ 5 ]  Biffinger J C , Pietron J , Ray R , et al . Biosens. Bioelectron. ,2007 , 22 : 1672 —1679
[ 6 ]  Zhao F , Harnisch F , Schroder U , et al . Electrochem. Commun. ,2005 , 7 : 1405 —1410
[ 7 ]  Yu E H , Cheng S A , Scott K, et al . J . Power Sources , 2007 , 171 :275 —281
[ 8 ]  赵庆良(Zhao Q L) , 张金娜(Zhang J N) , 尤世界( You S J ) 等.环境科学学报(Acta Scientiae Circumstantiae) , 2006 , 26 (12) :2052 —2057
[ 9 ]  He Z, Angenent L T. Electroanal . , 2006 , 18 : 2009 —2015
[10 ]  Hasvold O , Henriksen H , Melvaer E , et al . J . Power Sources ,1997 , 65 : 253 —261
[11 ]  Bergel A , Féron D , Mollica A. Electrochem. Commun. , 2005 , 7 :900 —904
[12 ]  Rabaey K, Read S T, Clauwaert P , et al . ISME J . , 2008 , 1 —9
[13 ]  Reimers C E , Girguis P , Stecher H A Ⅲ, et al . Geobiol . , 2006 ,4 : 123 - 136
[14 ]  Schamphelaire L D , Bossche L V D , Dang H S , et al . Environ. Sci .Technol . , 2008 , 42 (8) : 3053 —3058
[15 ]  Dumas C , Mollica A , Féron D , et al . Electrochim. Acta , 2007 ,53 : 468 —473
[16 ]  He Z, Shao H B , Angenent L T. Biosens. Bioelectron. , 2007 , 22 :3252 —3255
[17 ]  Rhoads A , Beyenal H , Lewandowski Z. Environ. Sci . Technol . ,2005 , 39 : 4666 —4671
[18 ]  Shantaram A , Beyenal H , Veluchamy R R A , et al . Environ. Sci .Technol . , 2005 , 39 : 5037 —5042
[19 ]  Caluwaert P , Ha D V D , Boon N , et al . Environ. Sci . Technol . ,2007 , 41 : 7564 —7569
[20 ]  Clauwaert P , Ha D V D , Verstraete W. Biotechnol . Lett . , 2008 ,30 (11) : 1947 —1951
[21 ]  Lopez-Lopez A , Exposito E , Anton J , et al . Biotechnol . Bioeng. ,1999 ,63 : 79 —86
[22 ]  祝学远(Zhu X Y) , 冯雅丽(Feng YL) , 李少华(Li S H) 等. 过程工程学报(The Chinese Journal of Process Engineering) , 2007 , 7(3) : 594 —597
[23 ]  Richter H , McCarthy K, Nevin K P , et al . Langmuir , 2008 , 24(8) : 4376 —4379
[24 ]  Park D H , Laivenieks M, Guettler M V , et al . Appl . Environ.Microbiol . , 1999 , 65 : 2912 —2917
[25 ]  Park D H , Zeikus J G. J . Bacteriol . , 1999 , 181 : 2403 —2410
[26 ]  Holmes D E , Bond D R , O’Neil R A , et al . Microb. Ecol . ,2004 , 48 : 178 —190
[27 ]  KimJ R , Zuo Y, Regan J M, et al . Biotechnol . Bioeng. , 2008 , 99(5) : 1120 —1127
[28 ]  Gregory K B , Lovley D R. Environ. Sci . Technol . , 2005 , 39 :8943 —8947
[29 ]  Park H I , Kim D K, Choi YJ , et al . Process Biochem. , 2005 , 40 :3383 —3388
[30 ]  Goel R K, Flora J R V. Environ. Eng. Sci . , 2005 , 22 (4) : 440 —449
[31 ]  Clauwaert P , Rabaey K, Aelterman P , et al . Environ. Sci .Technol . , 2007 ,41 : 3354 —3360
[32 ]  Lefebvre O , Al-Mamun A , Ooi W K, et al . Water Sci . Technol . ,2008 , 57 : 2031 —2037
[33 ]  Chen G W, Choi S J , Lee T H , et al . Appl . Microbiol .Biotechnol . , 2008 , 79 : 379 —388
[34 ]  Cord-Ruwisch R , Widdel F. Appl . Microbiol . Biotechnol . , 1986 ,25 : 169 —174
[35 ]  Ganesh R , Robinson K G, Chu L L , et al . Water Res. , 1999 , 33 :3447 —3458
[36 ]  李冬(Li D) , 张杰(Zhang J ) , 陈立学(Chen L X) 等. 中国给水排水(China Water and Wastewater) , 2004 , 20 (12) : 85 —88
[37 ]  Khoe G, Myint H Z. US6 558 556 , 2003
[38 ]  唐致远(Tang Z Y) , 耿新(Geng X) , 王占良(Wang Z L) 等. 应用化学(Chinese Journal of Applied Chemistry) , 2002 , 19 (10) :936 —940

[1] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[2] 常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华. 金属离子在微生物燃料电池中的行为[J]. 化学进展, 2014, 26(07): 1244-1254.
[3] 肖勇, 吴松, 杨朝晖, 郑越, 赵峰. 电化学活性微生物的分离与鉴定[J]. 化学进展, 2013, 25(10): 1771-1780.
[4] 陈立香, 肖勇, 赵峰. 微生物燃料电池生物阴极[J]. 化学进展, 2012, 24(01): 157-162.
[5] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[6] 刘宏芳,郑碧娟. 微生物燃料电池[J]. 化学进展, 2009, 21(6): 1349-1355.
[7] 卢娜,周顺桂,倪晋仁. 微生物燃料电池的产电机制*[J]. 化学进展, 2008, 20(0708): 1233-1240.
[8] 关毅,张鑫. 微生物燃料电池*[J]. 化学进展, 2007, 19(01): 74-79.
阅读次数
全文


摘要

生物阴极微生物燃料电池*