English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0708): 1662-1671 前一篇   后一篇

• 综述与评论 •

直接甲醇燃料电池膜电极的研究与进展*

索春光1**;刘晓为1,2;张宇峰1;张博1;张鹏1;王路文1   

  1. (1. 哈尔滨工业大学MEMS中心  |哈尔滨 |150001;2.微系统与微结构教育部重点实验室  哈尔滨  |150001)
  • 收稿日期:2008-04-01 修回日期:2008-05-27 出版日期:2009-08-24 发布日期:2009-06-30
  • 通讯作者: 索春光 E-mail:suochunguang@126.com
  • 基金资助:

    863项目

Development of Membrane Electrode Assembly for Direct Methanol Fuel Cells

Suo Chunguang1**;  |Liu Xiaowei1,2; |Zhang Yufeng1 ; |Zhang Bo1 |Zhang Peng1 |Wang Luwen1   

  1. (1. MEMS Center, Harbin Institute of Technology, Harbin 150001, China;2.Key Laboratory of Micro-Systems and Micro-Structures Manufacturing, Ministry of Education, Harbin 150001, China)
  • Received:2008-04-01 Revised:2008-05-27 Online:2009-08-24 Published:2009-06-30
  • Contact: Suo Chunguang E-mail:suochunguang@126.com

膜电极(MEA)是直接甲醇燃料电池(DMFC)的核心部件。文中对MEA的研究现状从4个方面进行了详细的评述。首先,对组成MEA的关键材料,如电催化剂、质子交换膜、扩散层的研究进展进行了介绍,认为开发低温高效、贵金属载量低的电催化剂以及研制低成本、低甲醇渗透的非氟质子交换膜是MEA关键材料的研究方向。第二,对于MEA的制备方法,文中对以DGL为支撑体的GDE法和以PEM为支撑体的CCM法进行了详细的评述,认为CCM法是今后MEA制备工艺的重要发展方向。第三,关于MEA的表征技术,认为采用电化学方法结合现代谱学技术仍是未来一段时间对MEA表征的主要手段。第四,介绍了MEA数学模型的研究现状,DMFC数学模型的研究是以PEMFC的模型为基础建立起来的,但是建立DMFC的数学模型要更为复杂,认为今后对DMFC膜电极模型的研究要充分考虑阳极二氧化碳与甲醇水溶液的两相流问题以及阴极甲醇渗透对电池性能影响的问题。最后,对直接甲醇燃料电池膜电极未来的发展进行了展望。

Membrane electrode assembly (MEA) is the key component of DMFC. In the paper, the research and development of MEA for the direct methaol fuel cell (DMFC) is reviewed in four aspects. Firstly, the development of key materials of MEA, i.e. electrocatalysts, proton exchange membrane (PEM), gas diffusion layer (GDL) is introduced. It is believed that research in providing a low price and methanol crossover PEM and finding a more efficient with low use of noble metal electrocatalysts are important in the key materials research work. Secondly, the fabrication of MEA, including GDL supported GDE method and PEM supported CCM method is reviewed systematically. The CCM method is considered main one in MEA fabrication technologies in the future. Thirdly, the characterization for MEA is introduced. It is believed that using electrochemistry combined modern spectroscopy methods would be the main choice for characterizing the MEA in the following period of time. Fourthly, development of modeling the DMFC is discussed. Modeling of DMFC is based on modeling of PEMFC, but for DMFC it is more complicated. In the future, when modeling the MEA of DMFC, the gas-liquid (CO2 and aqueous methanol solution) two-phase flow in the anode and the methanol crossover in cathode should be considered carefully. At last the prospect of the MEA for DMFC is discussed.

Contents
1 Key materials and components of the MEA
1.1 Electrocatalysts
1.2 Proton exchange membrane
1.3 Gas diffusion layer
2 Fabrication methods of the MEA
2.1 GDE method
2.2 CCM method
2.3 Optimizing structured MEA
3 Characterization for the MEA
4 Modeling study of the MEA
5 Prospects of the MEA

中图分类号: 

()

[ 1 ]  衣宝廉( Yi B L) . 燃料电池———原理·技术·应用( Fuel cell ———Principle , Technology and Application) . 北京: 化学工业出版社(Beijing: Chemical Industry Press) , 2003
[ 2 ]  王诚(Wang C) , 毛宗强(Mao Z Q) , 陈荣华(Chen H R) 等.化学进展(Progress in Chemistry) , 2006 , 18 (1) : 30 —35
[ 3 ]  Baldauf M, Preidel W. J . Power Sources , 1999 , 84 : 161 —166
[ 4 ]  Choi W C , Jeon M K, Kim YJ , et al . Catal . Today , 2004 , 93/95 :517 —522
[ 5 ]  毛宗强(Mao ZQ) . 燃料电池(Fuel Cells) . 北京: 化学工业出版社(Beijing: Chemical Industry Press) , 2003. 118 —119
[ 6 ]  Hogarth M P , Ralph T R. PlatinumMetals Rev. , 2002 , 46 : 146 —164
[ 7 ]  Shropshire J A. Electrochem. Soc. , 1965 , 112 (5) : 465 —469
[ 8 ]  Samjeske G, Wang H , Loffler T, et al . Electrochim. Acta , 2002 ,47 : 3681 —3692
[ 9 ]  Gotz M, Wendt H. Electrochim. Acta , 1998 , 43 : 3637 —3644
[10 ]  Tseung A C C , Chen K Y. Catal . Today , 1997 , 38 : 439 —443
[11 ]  Gê tz M, Wendt H. J . Appl . Electrochem. , 2001 , 31 : 811 —817
[12 ]  Reddington E , Sapienza A , Gurau B. Science , 1998 , 280 : 1735 —1737
[13 ]  Okada T, Gotou S , Yoshida M, et al . J . Inorg. Organomet .Polym. , 1999 , 9 : 199 —219
[14 ]  Convert P , Coutanceau C , Crouigneau P , et al . J . Appl .Electrochem. , 2001 , 31 : 945 —952
[15 ]  Faubert G, Cote R , Dodelet J P , et al . Electrochim. Acta , 1999 ,44 : 2589 —2603
[16 ]  Hobson L J , Ozu H , Yamaguchi M, et al . J . Electrochem. Soc. ,2001 , 148 : A1185 —A1190
[17 ]  Choi W C , KimJ D , Woo S I. J . Power Sources , 2001 , 96 : 411 —414
[18 ]  Pu C , Huang W, Ley K L , et al . J . Electrochem. Soc. , 1995 ,142 : L119 —L120
[19 ]  Kim YM, Park K W. Electrochemistry Communications , 2003 , 5 :571 —574
[20 ]  Tricoli V. J . Electrochem. Soc. , 1998 , 145 : 3798 —3801
[21 ]  吴洪(Wu H) , 王宇新(Wang YX) , 王世昌(Wang S C) . 高等化学工程学报(J . Chem. Eng. Chin. Univ. ) , 2002 , 16 (3) :326 —330
[22 ]  吴洪(Wu H) , 王宇新(Wang YX) , 王世昌(Wang S C) . 高分子学报(Acta Polym. Sinica) , 2002 , 4 : 540 —543
[23 ]  Liu X W, Suo C G, Zhang Y F , et al . J . Micromech. Microeng. ,2006 , 16 : S226 —S232
[24 ]  Xavier G, Mustapha E H , Deborah J J , et al . Solid State Ionics ,1997 , 97 : 323 —331
[25 ]  Deborah J J , Jacques R. J . Membr. Sci . , 2001 , 185 : 41 —58
[26 ]  Ainla A , Brandell D. Solid State Ionics , 2007 , 178 : 581 —585
[27 ]  Chen C Y, Rodriguez J I G, Duke M C , et al . J . Power Sources ,2007 , 166 : 324 —330
[28 ]  Shao Z G, Lin W F , Zhu F Y, et al . Electrochemistry Communications , 2006 , 8 : 5 —8
[29 ]  Shao Z G, Lin W F , Christensen P A , et al . Int . J . Hydrogen Energy , 2006 , 31 : 1914 —1919
[30 ]  Arisetty S , Prasad A K, Advani S G. J . Power Sources , 2007 , 165 :49 —57
[31 ]  黄乃科(Hang N K) , 王曙中(Wang S Z) , 李灵忻(Li L X) . 高科技纤维与应用(Hi2Tech Fiber &Application) , 2002 , 27 (6) :37 —40
[32 ]  Antolini E , Passos R R , Ticianelli E A. J . Power Sources , 2002 ,109 : 477 —482
[33 ]  Qi Z G, Kaufman A. J . Power Sources , 2002 , 109 : 38 —46
[34 ]  Xu C , Zhao T S , Ye Q. Eletrochim. Acta , 2006 , 51 : 5524 —5531
[35 ]  Zhao J S , He X M, Wang L , et al . Int . J . Hydrogen Energy ,2007 , 32 : 380 —384
[36 ]  Park KW, Kwon B K, Choi J H , et al . J . Power Sources , 2002 ,109 : 439 —445
[37 ]  Zhang J , Yin G P , Wang Z B , et al . J . Power Sources , 2006 , 160 :1035 —1040
[38 ]  Ticianelli E A , Derouin C R , Srinivasan S. J . Electroanal . Chem. ,1998 , 251 : 275 —295
[39 ]  Güzlow E , Kaz T. J . Power Sources , 2002 , 106 : 122 —125
[40 ]  Güzlow E , Schulze M, Wagner N , et al . J . Power Sources , 2000 ,86 : 352 —362
[41 ]  Güzlow E , Kaz T, Reissner R , et al . J . Power Sources , 2002 , 105 :261 —266
[42 ]  Taylor E J , Anderson E B. J . Electrochem. Soc. , 1992 , 139 :L45 —L46
[43 ]  Hirano S , Kim J , Srinivasan S. Electrochim. Acta , 1997 , 42 :1587 —1593
[44 ]  Wang C H , Du H Y, Tsai Y T, et al . J . Power Sources , 2007 ,171 : 55 —62
[45 ]  Shah K, Shin W C , Besser R S. Sensors and Actuators B , 2004 ,97 : 157 —167
[46 ]  Cha S Y, Lee W M. J . Electrochem. Soc. , 1999 , 146 : 4055 —4060
[47 ]  Ma Z Q , Cheng P , Zhao T S. J . Membr. Sci . , 2003 , 215 : 327 —336
[48 ]  Wilson M S , Gottesfeld S. J . Electrochem. Soc. , 1992 , 139 :L28 —L30
[49 ]  Wilson M S , Gottesfield S. J . Appl . Electrochem. , 1992 , 22 : 1 —7
[50 ]  Shao Z, Yi B , Han M. J . Power Sources , 1999 , 79 : 82 —85
[51 ]  Tang H L , Wang SL , Pan M, et al . Electrochim. Acta , 2007 , 52 :3714 —3718
[52 ]  Park J Y, Lee J H , Kim J , et al . J . Power Sources , 2008 , 179 :1 —8
[53 ]  Fedkiw P S , Her W H. J . Electrochem. Soc. , 1989 , 136 : L899 —L900
[54 ]  原鲜霞(Yuan X X) , 乔永进(Qiao YJ ) , 庞志成(Pang Z C) .稀有金属(Chin. J . Rare Metals) , 2000 , 24 (4) : 277 —281
[55 ]  Wei Z B , Wang SL , Yi B L , et al . J . Power Sources , 2002 , 106 :364 —369
[56 ]  樊小颖(Fan X Y) . 中国科学院大连化学物理研究所硕士学位论文(Master Dissertation of Dalian Institute of Chemical Physics ,Chinese Academy of Sciences) , 2004
[57 ]  Reshetenko T V , Kim H T, Kweon H J . Eletrochim. Acta , 2008 ,53 : 3043 —3049
[58 ]  袁权(Yuan Q) . 能源化学进展(Progress in Energy Chemistry) .北京: 化学工业出版社(Beijing : Chemical Industry Press) ,2005 , 149 : 151 —154
[59 ]  KimJ H , Ha H Y, Oh I H , et al . Eletrochim. Acta , 2004 , 50 :801 —806
[60 ]  Chakraborty D , Chorkendorff I , Johannessen T. J . Power Sources ,2006 , 162 : 1010 —1022
[61 ]  Müeller J T, Urban P M. J . Power Sources , 1998 , 75 : 139 —143
[62 ]  Müeller J T, Urban P M. J . Power Sources , 1999 , 84 : 157 —160
[63 ]  Sarma L S , Chen C H , Wang G R , et al . J . Power Sources , 2007 ,167 : 358 —365
[64 ]  Chen W M, Sun G Q , Guo J S , et al . Eletrochim. Acta , 2006 , 51 :2391 —2399
[65 ]  Jeng K T, Chen C W. J . Power Sources , 2002 , 112 : 367 —375
[66 ]  Nordlund J , Lindbergh G. J . Electrochem. Soc. , 2002 , 149 :A1107 —A1113
[67 ]  Wang Z H , Wang C Y. The 199th Electrochemical Society Proceedings Series , Princton , NJ , 2001
[68 ]  Divisek J , Fuhrmann J , Gartner K, et al . J . Electrochem. Soc. ,2003 , 150 : A811 —A825
[69 ]  Chan S H , Tun WA. Chem. Eng. Technol . , 2001 , 24 : 51 —57
[70 ]  Dehel H , Divisek J , Jung R. J . Power Sources , 2000 , 86 : 469 —477
[71 ]  Sundmacher K, Schultz T, Zhou S , et al . Chem. Eng. Sci . , 2001 ,56 : 333 —341
[72 ]  Fuller T F. Solid-Polymer-Electrolyte Fuel Cells. Doctoral Dissertation of University of Califonia Berkeley , Barkeley , 1992
[73 ]  Bernardi D M, Verbrugge MW. J . Electrochem. Soc. , 1992 , 139 :2477 —2491
[74 ]  Murgia G, Pisani L , Shukla A K, et al . J . Electrochem. Soc. ,2003 , 150 : A1231 —A1245
[75 ]  Kulikovsky A A. J . Appl . Electrochem. , 2000 , 30 : 1005 —1014
[76 ]  Weber A Z, Newman J . J . Electrochem. Soc. , 2003 , 150 :A1008 —A1015
[77 ]  Weber A Z, Newman J . J . Electrochem. Soc. , 2004 , 151 :A311 —A325
[78 ]  王晓丽(Wang XL) , 张华民(Zhang HM) , 张建鲁(Zhang J L)等. 化学进展(Progress in Chemistry) , 2006 , 18 (4) : 507 —513
[79 ]  唐志诚(Tang Z C) , 吕功煊(LüG X) . 化学进展(Progress in Chemistry) , 2007 , 19 (9) : 1301 —1312
[80 ]  Tang H L , Wang S L , Pan M, et al . Fuel Cells Bulletin , 2007 , 5 :12 —16

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 曹祥康, 孙晓光, 蔡光义, 董泽华. 耐久型超疏水表面:理论模型、制备策略和评价方法[J]. 化学进展, 2021, 33(9): 1525-1537.
[4] 杨英, 马书鹏, 罗媛, 林飞宇, 朱刘, 郭学益. 多维CsPbX3无机钙钛矿材料的制备及其在太阳能电池中的应用[J]. 化学进展, 2021, 33(5): 779-801.
[5] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[6] 杨英, 罗媛, 马书鹏, 朱从潭, 朱刘, 郭学益. 钙钛矿太阳能电池电子传输层的制备及应用[J]. 化学进展, 2021, 33(2): 281-302.
[7] 彭会荣, 蔡墨朗, 马爽, 时小强, 刘雪朋, 戴松元. 全无机钙钛矿太阳电池的制备及稳定性[J]. 化学进展, 2021, 33(1): 136-150.
[8] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[9] 汪润田, 柳春丽, 陈振斌. 印迹复合膜[J]. 化学进展, 2020, 32(7): 989-1002.
[10] 吕维扬, 孙继安, 姚玉元, 杜淼, 郑强. 层状双金属氢氧化物的控制合成及其在水处理中的应用[J]. 化学进展, 2020, 32(12): 2049-2063.
[11] 李巍, 杨子煜, 侯仰龙, 高松. 二维磁性纳米材料的可控合成及磁性调控[J]. 化学进展, 2020, 32(10): 1437-1451.
[12] 贾强, 宋洪伟, 唐盛, 王静, 彭银仙. 功能化多孔材料的制备及其在特异性识别分离中的应用[J]. 化学进展, 2019, 31(8): 1148-1158.
[13] 姚东梅, 张玮琦, 徐谦, 徐丽, 李华明, 苏华能. 磷酸掺杂聚苯并咪唑高温膜燃料电池膜电极[J]. 化学进展, 2019, 31(2/3): 455-463.
[14] 叶跃坤, 池滨, 江世杰, 廖世军. 质子交换膜燃料电池膜电极耐久性的提升[J]. 化学进展, 2019, 31(12): 1637-1652.
[15] 王俊莲, 刘新宇, 谢美英, 王化军. 体离子印迹材料的制备方法[J]. 化学进展, 2018, 30(7): 989-1012.