English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0708): 1546-1552 前一篇   后一篇

• 综述与评论 •

可降解聚氨酯型组织工程多孔支架材料的制备*

姚响;庹新林**;王晓工   

  1. (清华大学化工系高分子研究所   |北京 |100084)
  • 收稿日期:2008-09-15 修回日期:2008-11-10 出版日期:2009-08-24 发布日期:2009-06-30
  • 通讯作者: 庹新林 E-mail:tuoxl@mail.tsinghua.edu.cn
  • 基金资助:

    863项目

Preparing Biodegradable Polyurethane Porous Scaffold for Tissue Engineering Application

Yao Xiang |Tuo Xinlin** |Wang Xiaogong   

  1. (Institute of Polymer Science and Engineering| Department of Chemical Engineering| Tsinghua University| Beijing 100084, China)
  • Received:2008-09-15 Revised:2008-11-10 Online:2009-08-24 Published:2009-06-30
  • Contact: Tuo Xinlin E-mail:tuoxl@mail.tsinghua.edu.cn

本文在可降解型聚氨酯分子设计,聚氨酯型组织工程支架制备方法,可降解聚氨酯多孔支架的生物学性能及可降解聚氨酯多孔支架在组织工程中的应用等几个方面对可降解聚氨酯型组织工程支架的最新研究进展作了综述。重点讨论了静电纺丝、冷冻干燥、相分离等几种聚氨酯多孔支架制备方法以及聚氨酯型组织工程支架的生物降解性质、生长因子嵌入、生物力学性能、生物相容性等生物学性能。目前的研究表明通过聚氨酯分子设计与各种支架制备方法结合可制得满足各种生物学性能的支架材料且这类材料已被证实在血管、软骨、骨等各类组织工程中有重要的应用价值。但如何进一步提高聚氨酯支架材料的力学强度以使其能更好地与硬组织的力学性能相匹配以及如何降低或消除聚氨酯对人体的毒性仍是需要进一步研究的问题。

Recent development in some facets for the investigation of biodegradable polyurethane tissue engineering scaffold including biodegradable polyurethane molecular design, fabrication methods of polyurethane tissue engineering scaffold, the biological properties of the biodegradable polyurethane porous scaffold and the application of biodegradable polyurethane porous scaffold in tissue engineering are reviewed. We focus on several polyurethane scaffold preparation methods such as electrostatic spinning, freeze drying, phase separation and some biological properties such as biological degradation property, the imbed of growth factor agent, biological mechanical property and biocompatibility, etc. Recent progress indicates that it is possible to fabricate various kinds of scaffold material which may meet the demand of various kinds of biological properties through the combination of polyurethane molecular design and those scaffold fabrication methods and it has been confirmed that this kind of material has great potential in the application such as vascular, cartilage and bone tissue engineering. However, the mechanical strength of the polyurethane scaffold should be further boosted in order to match the mechanical property of the hard tissue and the toxicity of the polyurethane should be further decreased or eliminated in the future investigation.

Contents
1 The molecular design of biodegradable polyurethane
2 The fabrication methods of polyurethane tissue engineering scaffold
2.1 Electrospun
2.2 Freeze drying
2.3 Phase separation
3 Biological properties of biodegradable polyurethane scaffold
3.1 Biodegradabilty
3.2 Incorporation of growth factor
3.3 Biomechanics
3.4 Biocompatibity
4 Conclusion and prospects

中图分类号: 

()

[ 1 ]  Griffith L G, Naughton G. Science , 2002 , 295 : 1009 —1014
[ 2 ]  Guan J J , Fujimoto K L , Wagner W R , et al . Biomaterials , 2005 ,26 : 3961 —3971
[ 3 ]  Sun H , Wei L , Song C , et al . Biomaterials , 2006 , 27 : 1735 —1740
[ 4 ]  Cohn D , Stern T, Gonzalez M, et al . J . Biomed. Mater. Res. ,2002 , 59 : 273 —281
[ 5 ]  Fromstein J D , Woodhouse K A. J . Biomater. Sci . Polym. Ed. ,2002 , 13 : 391 —406
[ 6 ]  Zhao Q , Cheng G, Li H. Polymer , 2005 , 46 : 10561 —10567
[ 7 ]  Li X, Loh X J , Wang K. Biomacromolecules , 2005 , 6 : 2740 —2747
[ 8 ]  Yu J , Plackett D , Chen L X L. Polymer Degradation and Stability ,2005 , 89 : 289 —299
[ 9 ]  Moore T, Adhikari R , Gunatillake P. Biomaterials , 2005 , 26 :3771 —3782
[10 ]  Tsuji H. In Biopolymers (Eds. Steinbuchel A , Doi Y) . Weinheim: Wiley-VCH , 2002 , 4 : 129 —178
[11 ]  Kricheldorf H R. Chemosphere , 2001 , 43 : 49 —54
[12 ]  Cooper T R , Storey R F. Macromolecules , 2008 , 41 : 655 —662
[13 ]  Lee S H , Kim S H , Han Y K, Kim Y H. Macromolecules , 2001 ,39 : 973 —985
[14 ]  Wang WS , Ping P , Jing XB , et al . J . Appl . Polym. Sci . , 2007 ,104 : 4182 —4187
[15 ]  Sharja G A , Woodhouse K A. J . Biomater. Sci . Polym. Ed. ,1998 , 9 : 271 —295
[16 ]  Elliott S L , Fromstein J D , Wodhouse K A , et al . J . Biomater. Sci .Polym. Ed. , 2002 , 13 : 691 —711
[17 ]  Guelcher S A , Gallagher KM, Didier J E. Acta Biomater. , 2005 ,1 : 471 —484
[18 ]  Ma Z, Kotaki M, Inai R , et al . Tissue Eng. , 2005 , 11 : 101 —120
[19 ]  Goodman S L , Sims P A , Albrecht R M. Biomaterials , 1996 , 17 :2087 —2087
[20 ]  Hutmacher D W. J . Biomater. Sci . Polym. Ed. , 2001 , 12 : 107 —124
[21 ]  Kowligi R R , Maltzahn W W, Eberhart R C. J . Biomed. Mater.Res. , 1988 , 22 : 245 —256
[22 ]  Bornat A , US 4323525 , 1982
[23 ]  Chong C , Black R , Hunt J , et al . 10th International Conference on Biomedical Engineering , Singapore , 2000
[24 ]  How T O , US 4552707 , 1985
[25 ]  How T O , Annis D. J . Biomed. Mater. Res. , 1987 , 21 : 1093 —1108
[26 ]  How T V , Clarke R M. J . Biomechanics , 1984 , 17 : 597 —599
[27 ]  Mohanty M, Hunt J A , Doherty P J , et al . Biomaterials , 1992 , 13 :651 —656
[28 ]  Kidoaki S , Kwon I K, Matsuda T. Biomaterials , 2005 , 26 : 37 —46
[29 ]  Simonet M, Schneider O D , Neuenschwander P , et al . Polym. Eng.Sci . , 2007 , 47 : 2020 —2026
[30 ]  Andrews K D , Hunt J A , Black R A. Polym. Int . , 2008 , 57 :203 —210
[31 ]  Zhang H , Hussain I , Brust M, et al . Nature Materials , 2005 , 4 :787 —793
[32 ]  Mahler W, Bechtold M F. Nature , 1980 , 285 : 27 —28
[33 ]  Mukai S R , Nishihara H , Tamon H. Chem. Commun. , 2004 ,874 —875
[34 ]  Fukasawa T, Ando M, Ohji T, et al . J . Am. Ceram. Soc. , 2001 ,84 : 230 —232
[35 ]  Kim S S , Lloyd D R. J . Membrane Sci . , 1991 , 64 : 13 —29
[36 ]  Vadalia H C , Lee H K, Myerson A S , et al . J . Membrane Sci . ,1994 , 89 : 37 —50
[37 ]  Mehta H R , Madsen D A , Kalika D S. J . Membrane Sci . , 1995 ,107 : 93 —106
[38 ]  Cha B J , Char K, KimJ J , et al . J . Membrane Sci . , 1995 , 108 :219 —229
[39 ]  Matsuyama H , Berghmans S , Lloyd D R. Polymer , 1999 , 40 :2289 —2301
[40 ]  Gorna K, Gogolewski S. J . Biomed. Mater. Res. , 2006 , 79 :128 —138
[41 ]  Santerre J P , Woodhouse K A , Laroche G, et al . Biomaterials ,2005 , 26 : 7457 —7470
[42 ]  Jannasch P. Macromolecules , 1998 , 31 : 1341 —1347
[43 ]  Wen J M, Somorjai G, Lim F , et al . Macromolecules , 1997 , 30 :7206 —7213
[44 ]  Deslandes Y, Pleizier G, Alexander D , et al . Polymer , 1998 ,39 :2361 —2366
[45 ]  Zhang D , Gracias D H , Ward R , et al . J . Phys. Chem. B , 1998 ,102 : 6225 —6230
[46 ]  Wang D , Ji J , Sun Y, et al . Biomacromolecules , 2002 , 3 : 1286 —1295
[47 ]  Zhang Y Z, Wang X, Feng Y, et al . Biomacromolecules , 2006 , 7 :1049 —1057
[48 ]  Freed L E , Vunjak-Novakovic G, Biron R J , et al . Biotechnology ,1994 , 12 : 689 —693
[49 ]  Sacks M S. J . Elasticity , 2000 , 61 : 199 —246
[50 ]  Engelmayr G C , Rabkin E , Sutherland F W H , et al . Biomaterials ,2005 , 26 : 175 —186
[51 ]  Courtney T, Sacks M S , Stankus J , et al . Biomaterials , 2006 , 27 :3631 —3638
[52 ]  Kavlock K D , Pechar T W, Goldstein A S , et al . Acta Biomaterialia , 2007 , 3 : 475 —484
[53 ]  Williamson M R , Black R , Kielty C. Biomaterials , 2006 , 27 :3608 —3616
[54 ]  Buma P , Ramrattan N N , Tienen T G, et al . Biomaterials , 2004 ,25 : 1523 —1532
[55 ]  Bonzani I C , Adhikari R , Houshyar S , et al . Biomaterials , 2007 ,28 : 423 —433

[1] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[2] 牛小连, 刘柯君, 廖子明, 徐慧伦, 陈维毅, 黄棣. 基于骨组织工程的静电纺纳米纤维[J]. 化学进展, 2022, 34(2): 342-355.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 赵君, 黄仁亮, 齐崴, 王跃飞, 苏荣欣, 何志敏. 苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用[J]. 化学进展, 2014, 26(09): 1445-1459.
[5] 孙盟盟, 何勇, 杨万泰, 尹梅贞. 磷酸乙二酯类聚合物的合成及其生物应用[J]. 化学进展, 2013, 25(12): 2093-2102.
[6] 张金超*, 胡毅*, 余四旺, 高愈希, 张海松. 转化医学研究中的生物无机化学问题探讨[J]. 化学进展, 2013, 25(04): 469-478.
[7] 张金超 刘丹丹 周国强 申世刚. 纳米材料在组织工程中的应用*[J]. 化学进展, 2010, 22(11): 2232-2237.
[8] 魏宏亮,王连才,张爱英,朱凯强,冯增国. 可注射水凝胶的制备与应用*[J]. 化学进展, 2004, 16(06): 1008-.
[9] 崔俊锋,尹玉姬,何淑兰,姚康德. 骨组织工程支架材料研究进展*[J]. 化学进展, 2004, 16(02): 299-.
[10] 蔡开勇,林松柏,姚康德. 组织工程相关生物材料表面工程的研究进展[J]. 化学进展, 2001, 13(01): 56-.
[11] 张国栋,杨纪元,冯新德,顾忠伟. 聚乳酸的研究进展[J]. 化学进展, 2000, 12(01): 89-.