English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0708): 1427-1433 前一篇   后一篇

• 综述与评论 •

室温离子液体的分子动力学模拟

郑燕升*;莫倩;孟陆丽;程谦伟   

  1. (广西工学院生物与化学工程系  |柳州   |545006)
  • 收稿日期:2008-08-21 修回日期:2008-09-18 出版日期:2009-08-24 发布日期:2009-06-30
  • 通讯作者: 郑燕升 E-mail:zhyansh88@163.com
  • 基金资助:

    广西教育厅资助项目(200708LX198);省级资助

Molecular Dynamics Simulation for Room Temperature Ionic Liquids

Zheng Yansheng*|Mo Qian|Meng Luli|Cheng Qianwei   

  1. (Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006, China)
  • Received:2008-08-21 Revised:2008-09-18 Online:2009-08-24 Published:2009-06-30
  • Contact: Zheng Yansheng E-mail:zhyansh88@163.com

室温离子液体作为一种新型的反应介质正在受到人们的关注,近十年来成为了化学领域的研究热点。随着人们对离子液体结构与性质研究的不断深入和计算方法的快速发展,分子模拟已是研究离子液体的结构和性质的有力工具。本文介绍了分子动力学(molecular dynamics,MD)的基本原理,分子力场的种类,以及离子液体分子动力学模拟一般基于的AMBER、OPLS和CHARMM三种力场的构建形式。综述了近年来纯组分离子液体、混合组分离子液体分子动力学模拟方法研究取得的成果和最新的进展,并分析了主要存在问题。展望了离子液体分子动力学模拟的研究方向和前景,同时还提出了包含极化作用和静电远程作用的离子液体分子动力学模拟研究的基本思路。

Room temperature ionic liquids (RTILs) are gaining interest as new reaction media. There has been a dramatic growth in RTILs research over the past decade and a large number of novel RTILs with a wide range of application have been discovered. With deepened research on the structure and properties of RTILs, and booming computing methods, the molecular simulation has been a powerful tool to study structural, dynamic and thermodynamic properties of RTILs. In this paper, the principle of molecular dynamics (MD), and the category of molecular force field, and the establishment of AMBER、OPLS and CHARMM force field are introduced. The achievements and new progress in the research of the pure constituents RTILs and mixture constituents RTILs utilized molecular dynamics simulation are summarized. The main existing problems are analyzed. Finally this paper prospects of the research directions and outlook of molecular dynamics simulation for RTILs. In addition, some basic ideas for building the molecular simulation model of RTILs, such as polarization action and electrostatic remote action are also proposed.   

Contents
1 Introduction
2 Molecular dynamics simulation
2.1 The principle of molecular dynamics
2.2 The establishment of molecular force field
3 Molecular dynamics simulation for room temperature ionic liquids
3.1 Molecular dynamics simulation for room temperature ionic liquids of pure constituents
3.2 Molecular dynamics simulation for room temperature ionic liquids of mixture constituents
4 Conclusion and perspective

中图分类号: 

()

[ 1 ]  Earle MJ , Esperanca Jose MS S , Gilea MA , et al . Nature , 2006 ,439 : 831 —834
[ 2 ]  Rogers R D , Seddon K R. Science , 2003 , 302 : 792 —793
[ 3 ]  Wasserscheid P , Keim W. Angew. Chem. Int . Ed. , 2000 , 39(21) : 3772 —3789
[ 4 ]  Welton T. Chem. Rev. , 1999 , 99 (8) : 2071 —2083
[ 5 ]  Canongia Lopes J N A , Padua A A H. J . Phys. Chem. B , 2006 ,110 : 3330 —3335
[ 6 ]  Zhou G, Liu X, Zhang S , et al . J . Phys. Chem. B , 2007 , 111 :7078 —7084
[ 7 ]  Zheng L , Guo C , Wang J , et al . J . Phys. Chem. B , 2007 , 111 :1327 —1333
[ 8 ]  Liu X, Zhang S , Zhou G, et al . J . Phys. Chem. B , 2007 , 111 :5658 —5668
[ 9 ]  Gu Y L , Shi F , Deng Y Q. Chinese Sci . Bull . , 2004 , 47 (6) :515 —521
[10 ]  Zhang J , Zheng S , Dong K, et al . Sci . China Ser. B , 2006 , 49(2) : 103 —115
[11 ]  Andrews D H. Phys. Rev. , 1930 , 36 : 544 —554
[12 ]  Lifson A , Warshel S. J . Chem. Phys. , 1968 , 49 : 5116 —5229
[13 ]  Allinger N L , Thomas M, Miller MA , et al . J . Am. Chem. Soc. ,1971 , 93 : 1637 —1648
[14 ]  Allinger N L. J . Am. Chem. Soc. , 1977 , 99 : 3279 —3279
[15 ]  Weiner S J , Kollman P A , Case D A. J . Am. Chem. Soc. , 1984 ,106 : 765 —784
[16 ]  Brooks B R , Bruccoleri R E , Olafson B D , et al . J . Comput .Chem. , 1983 , 4 : 187 —217
[17 ]  Mackerell A D , Bashford D , Bellott M, et al . J . Phys. Chem. B ,1998 , 102 : 3586 —3616
[18 ]  Allinger N L , Yuh Y H , Lii J H. J . Am. Chem. Soc. , 1989 , 111 :8551 —8566
[19 ]  Allinger N L , Chen K, Lii J H. J . Comput . Chem. , 1996 , 17 :730 —746
[20 ]  Allured V S , Kelly C M, Landis C R. J . Am. Chem. Soc. , 1991 ,113 : 1 —12
[21 ]  Halgren T A. J . Comp. Chem. , 1996 , 17 : 520 —522
[22 ]  Jorgensen W L , Maxwell D S , Tirado-Rives J . J . Am. Chem. Soc. ,1996 , 118 : 11225 —11236
[23 ]  Mayo S L , Olafson B D , Goddard W A , et al . J . Phys. Chem. ,1990 , 94 : 8897 —8909
[24 ]  Rappe A K, Casewit CJ , Colwell KS , et al . J . Am. Chem. Soc. ,1992 , 114 : 10024 —10035
[25 ]  Sun H. J . Phys. Chem. B , 1998 , 102 : 7338 —7364
[26 ]  Toxvaerd S. J . Chem. Phys. , 1990 , 93 : 4290 —4295
[27 ]  Alder B J , Wainwright T E. J . Chem. Phys. , 1959 , 31 : 459 —466
[28 ]  Rahman A. Phys Rev. , 1964 , 136 (2A) : 405 —411
[29 ]  Rahman A , Stillinger F H. J . Chem. Phys. , 1971 , 55 : 3336 —3359
[30 ]  Hanke C G, Price S L , Lynden-Bell R M. Mol . Phys. , 2001 , 99(10) : 801 —809
[31 ]  Morrow T I , Maginn E J . J . Phys. Chem. B , 2003 , 107 : 9160 —9160
[32 ]  Morrow T I , Maginn EJ . J . Phys. Chem. B , 2002 , 106 : 12807 —12813
[33 ]  Margulis C J , Sterm H A , Beme B J . J . Phys. Chem. B , 2002 ,106 : 12017 —12021
[34 ]  Andrade J , Boes E S , Stassen H. J . Phys. Chem. B , 2002 , 106 :3546 —3548
[35 ]  Andrade J , Boes E S , Stassen H. J . Phys. Chem. B , 2002 , 106 :13344 —13351
[36 ]  Lopes J N C , Deschamps J , Padua A A H. J . Phys. Chem. B ,2004 , 108 : 2038 —2047
[37 ]  Lopes J N C , Padua A A H. J . Phys. Chem. B , 2004 , 108 :16893 —16898
[38 ]  Liu Z P , Huang S P , Wang W C. J . Phys. Chem. B , 2004 , 108 :12978 —12989
[39 ]  Wu X P , Liu Z P , Wang W C. Phys. Chem. Chem. Phys. , 2006 ,8 : 1096 —1104
[40 ]  Resende Prado C E , Gomide Freitas L C. J . Mol . Struct . , 2007 ,847 : 93 —100
[41 ]  Breneman C M, Wiberg K B. J . Comput . Chem. , 1990 , 11 :361 —373
[42 ]  Hanke C G, Lynden-Bell R M. J . Phys. Chem. B , 2003 , 107 :10873 —10878
[43 ]  Harper J B , Lynden-Bell RM. Mol . Phys. , 2004 , 102 (1) : 85 —94
[44 ]  Wu X P , Liu Z P. Acta Phys. Chim. Sin. , 2005 , 21 (5) : 1036 —1041
[45 ]  Wu X P , Liu Z P , Wang W C. Acta Phys. Chim. Sin. , 2005 , 21(10) : 1138 —1142
[46 ]  Wu X P , Liu Z P , Wang W C. Phys. Chem. Chem. Phys. , 2005 ,7 : 2771 —2779
[47 ]  Margulis C J , Stern H A , Bern B J . J . Phys. Chem. B , 2003 ,106 : 12017 —12021
[48 ]  Li S , Liu L , Cao Z, et al . Acta Phys. Chim. Sin. , 2007 , 23 (7) :983 —986
[49 ]  Aayssier P , Chaumont A , Wipff G. Phys. Chem. Chem. Phys. ,2005 , 7 : 124 —135
[50 ]  Chaumont A , Wipff G. Phys. Chem. Chem. Phys. , 2003 , 5 :3481 —3488
[51 ]  Chaumont A , Wipff G. Phys. Chem. Chem. Phys. , 2005 , 7 :1926 —1932
[52 ]  Chaumont A , Wipff G. J . Mol . Liq. , 2007 , 131/132 : 36 —47

[1] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[2] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[3] 雷东升, 童慧敏, 张磊, 张星, 张胜利, 任罡. 胆固醇酯转移蛋白在胆固醇酯转移中的结构与功能[J]. 化学进展, 2014, 26(05): 879-888.
[4] 赵丽君, 雷鸣. 甲状腺结合前清蛋白的理论研究[J]. 化学进展, 2014, 26(01): 193-202.
[5] 常姗燕, 刘夫锋*. 三磷酸腺苷结合盒式转运体的分子模拟[J]. 化学进展, 2013, 25(07): 1208-1218.
[6] 陈景飞, 郝京诚. 表面活性剂溶液行为的粗粒化模拟[J]. 化学进展, 2012, (10): 1890-1896.
[7] 巫瑞波, 曹泽星*, 张颖凯*. 锌酶的计算模拟:挑战与最新进展[J]. 化学进展, 2012, 24(06): 1175-1184.
[8] 金海晓 严小军 朱鹏. PKA酶及其抑制剂balanol的计算化学*[J]. 化学进展, 2010, 22(05): 993-1001.
[9] 郑勇,轩小朋,许爱荣,郭蒙,王键吉. 室温离子液体溶解和分离木质纤维素*[J]. 化学进展, 2009, 21(09): 1807-1812.
[10] 翟翠萍,刘学军,王键吉. 核磁共振波谱技术在室温离子液体研究中的应用*[J]. 化学进展, 2009, 21(05): 1040-1051.
[11] 邓平晔,张冬海,田亚峻,陈运法,丁辉. 自组装的分子动力学模拟[J]. 化学进展, 2007, 19(9): 1249-1257.
[12] 张国栋,陈晓,靖波. 室温离子液体中的有序分子组合体*[J]. 化学进展, 2006, 18(09): 1085-1091.
[13] 曹洁明,房宝青,王军,郑明波,邓少高,马贤佳. 离子液体在无机纳米材料合成上的应用[J]. 化学进展, 2005, 17(06): 1028-1033.
[14] 蔡文生,林翼,邵学广. 团簇研究中的原子间势函数*[J]. 化学进展, 2005, 17(04): 588-596.
[15] 赵大成,徐海涛,徐鹏,刘凤岐,高歌. 室温离子液体中的聚合反应[J]. 化学进展, 2005, 17(04): 700-705.
阅读次数
全文


摘要

室温离子液体的分子动力学模拟