English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0203): 458-466 前一篇   后一篇

• 环境化学专辑 •

砷的生物地球化学

胡立刚;蔡勇*   

  1. (佛罗里达国际大学化学与生物化学系Miami , FL 33199 , USA)
  • 收稿日期:2009-01-15 出版日期:2009-03-24 发布日期:2009-04-03
  • 通讯作者: 蔡勇 E-mail:cai@fiu.edu

Biogeochemical of Arsenic

Hu Ligang; Cai Yong*   

  1. (Department of Chemistry &Biochemistry , Florida International University , Miami , FL 33199 , USA)
  • Received:2009-01-15 Online:2009-03-24 Published:2009-04-03
  • Contact: Cai Yong E-mail:cai@fiu.edu

地下水和饮用水中低剂量砷引起的环境健康问题在全球范围内受到广泛关注。本文从生物地球化学行为角度综述了关于砷在环境中迁移转化方面的研究进展:首先介绍了砷在土壤、水体和大气等介质中的分布、形态以及砷在这些介质中的循环;然后阐述了环境水体中控制砷迁移的两个过程即:砷在土壤表面的吸附-解吸和沉淀-溶解过程,并详细讨论了在吸附-解吸过程中生物、物理和化学等因素的影响。

Arsenic contamination in groundwater and drinking water and associated environmental health problems are widely concerned. Studies on the behavior of arsenic in the environment are very important in order to deal with these problems. Here a brief review on the transport and cycling of arsenic in the environment is conducted. The source, distribution, and speciation of arsenic in soil, water, and atmosphere are first introduced, then followed by a discussion on the processes largely controlling arsenic mobility in water-adsorption-desorption reactions and solid phase precipitation-dissociation reactions.

Content
1 Introduction
2 Distribution and cycling of arsenic in environment
2.1 Sources and distribution of arsenic in soils
2.2 Sources and distribution of arsenic in waters
2.3 Sources and distribution of arsenic in atmosphere
3 Mechanisms for mainly controlling the transport and transformation of arsenic in waters
3.1 Adsorption-desorption processes of arsenic in soils
3.2 Precipitation-dissolution processes of arsenic in soils
4 Prospective

中图分类号: 

()

[ 1 ]  Abernathy C. United Nations Synthesis Report on Arsenic in Drinking Water. United Nations System Chief Executives Board for Coordination/Sub-Committee on Water Resources. 2001
[ 2 ]  ATSDR Toxicological Profile for Arsenic. U. S. Department of Health and Human Service. Atlanta , GA , 2007
[ 3 ]  IARC Monographs on the Evaluation of Carcinogenic Risks to Humans , Volume 100 : A Review of Human Carcinogens.International Agency for Reseach on Cancer
[ 4 ]  IRIS , U. S. Environmental Protection Agency. [ 2008212 ] http://cfpub.epa.gov/ncea/iris/index.cfm
[ 5 ]  Jin Y, Liang C , He G, Cao J , Ma F , Wang H , Ying B , Ji R.Journal of Hygiene Research , 2003 , 32 : 519 —540
[ 6 ]  O’Day P A , Vlassopoulos D , Meng X, Benning L. Advances in Arsenic Research : Introductory Remarks. Washington , DC:Ametican Chemical Society. 2005
[ 7 ]  WHO. [2008-12 ]http://www.who.int/mediacentre/factsheets/fs210/en/
[ 8 ]  Yamamura S. United Nations Synthesis Report on Arsenic in Drinking Water. United Nations System Chief Executives Board for Coordination/Sub-Committee on Water Resources , 2001
[ 9 ]  Lide D R. CRC Handbook of Chemistry and Physics , 88th Edition( Internet vesion 2008) . Boca Raton: CRC Press/Taylor and Francis
[10 ]  Harvey C F , Beckie R D. Arsenic: Its Biogeochemistry and Transport in Groundwater. Boca Raton : Taylor & Francis Group , 2005
[11 ]  Matschullat J . Science of the Total Environment , 2000 , 249 : 297 —312
[12 ]  USGS. [ 2008-12 ] http://minerals.usgs.gov/minerals/pubs/commodity/arsenic/index.html # mcs
[13 ]  Nriagu J O , Pacyna J M. Nature , 1988 , 333 : 134 —139
[14 ]  Huang Y C. Arsenic in the Environment Part I : Cycling and Characterization(Ed. Niriagu J O) . New York : John Wiley &Sons ,1994
[15 ]  Smedley P L , Kinniburgh D G. Applied Geochemistry , 2002 , 17 :517 —568
[16 ]  Francesconi K A , Kuehnelt D. Arsenic Compounds in the Environment . New York : Marcel Dekker , 2002
[17 ]  Smedley P L , Kinniburgh D G. United Nations Synthesis Report on Arsenic in Drinking Water. United Nations System Chief Executives Board for Coordination/Sub-Committee on Water Resources , 2001
[18 ]  Duker A A , Carranza E J M, Hale M. Environment International ,2005 , 31 : 631 —641
[19 ]  Amini M, Abbaspour K C , Berg M, Winkel L , Hug S J , Hoehn E ,Yang H , Johnson C A. Environmental Science &Technology , 2008 ,42 : 3669 —3675
[20 ]  Polizzotto ML , Harvey C F , Sutton S R , Fendorf S. Proceedings of the National Academy of Sciences , 2005 , 102 : 18819 —18823
[21 ]  Polizzotto M L , Kocar B D , Benner S G, Sampon M, Fendorf S.Nature , 2008 , 454 : 505 —509
[22 ]  Watt C , Le X C. Biogeochemistry of Environmentally Important Trace Elements ( Eds. Cao Y, Braids O C) . Washinton DC: American Chemical Society , 2003
[23 ]  Santosa S J , Wada S , Tanaka S. Applied Organometallic Chemistry ,1994 , 8 : 273 —283
[24 ]  Hinkle S R , Polette D J . Arsenic in Ground Water of the Willamette Basin, Oregon. U S Department of the Interior , U S Geological Survey : Pottland , 1999
[25 ]  Islam F S , Gault A G, Boothman C , Polya D A , Charnock J M,Chatterjee D , Lloyd J R. Nature , 2004 , 430 : 68 —71
[26 ]  Mok WM, Wai C M. Arsenic in the Environment Part I : Cycling and Characcterization ( Ed. Nriagu J ) . New York : John Wiley & Sons , 1994
[27 ]  Dzombak D A , Morel F M M. Surface Complexation Modeling :Hydrous Ferric Oxide. New York : John Wiley &Sons , 1990
[28 ]  Dixit S , Hering J G. Environmental Science & Technology , 2003 ,37 : 4182 —4189
[29 ]  Inskeep W P , McDermott T R , Fendorf S. Environmental Chemistry of Arsenic (Eds. William T, Frankenberger J ) , New York : Marcel Dekker , 2002
[30 ]  Zhang J S , Stanforth R. Langmuir , 2005 , 21 : 2895 —2901
[31 ]  Hering J G, Kneebone P E. Biogeochemical Control on Arsenic Occurrence and Mobility in Water Supplies. New York : Marcel Dekker , 2002
[32 ]  Masion A , Vilge-Ritter A , Rose J , Stone W E E , Teppen B J ,Rybacki D , Bottero J Y. Environmental Science & Technology ,2000 , 34 : 3242 —3246
[33 ]  Redman A D , Macalady D L , Ahmann D. Environmental Science & Technology , 2002 , 36 : 2889 —2896
[34 ]  Weng L P , Temminghoff E J M, Lofts S , Tipping E , van Riemsdijk W H. Environmental Science &Technology , 2002 , 36 : 4804 —4810
[35 ]  Chen Z R , Cai Y, Solo-Gabriele H , Snyder G H , Cisar J L.Environmental Science & Technology , 2006 , 40 : 4659 —4665
[36 ]  Lin H T, Wang M C , Li G C. Chemosphere , 2004 , 56 : 1105 —1112
[37 ]  Ritter K, Aiken G R , Ranville J F , Bauer M, Macalady D L.Environmental Science & Technology , 2006 , 40 : 5380 —5387
[38 ]  Chiu V Q , Hering J G. Environmental Science &Technology , 2000 ,34 : 2029 —2034
[39 ]  Scott MJ , Morgan J J . Environmental Science &Technology , 1995 ,29 : 1898 —1905
[40 ]  Scott D T, McKnight D M, Blunt-Harris EL , Kolesar S E , Lovley D R. Environmental Science & Technology , 1998 , 32 : 2984 —2989
[41 ]  Davis J A , Gloor R. Environmental Science & Technology , 1981 ,15 : 1223 —1229
[42 ]  Gu B H , Schmitt J , Chen Z H , Liang L Y, McCarthy J F.Environmental Science & Technology , 1994 , 28 : 38 —46
[43 ]  Grafe M, Eick M J , Grossl P R. Soil Science Society of America Journal , 2001 , 65 : 1680 —1687
[44 ]  Chen Z, Cai Y, Liu G, Solo-Gabriele H , Snyder G H , Cisar J L.Science of the Total Environment , 2008 , 406 : 180 —189
[45 ]  Fujii M, Rose A L , Waite T D , Omura T. Geochimica et Cosmochimica Acta , 2008 , 72 : 1335 —1349
[46 ]  Oremland R S , Stolz J F. Science , 2003 , 300 : 939 —944
[47 ]  Nicholas D R , Ramamoorthy S , Palace V , Spring S , Moore J N ,Rosenzweig R F. Biodegradation , 2003 , 14 : 123 —137
[48 ]  Zobrist J , Dowdle P R , Davis J A , Oremland R S. Environmental Science & Technology , 2000 , 34 : 4747 —4753
[49 ]  Ahmann D , Roberts A L , Krumholz L R , Morel F M M. Nature ,1994 , 371 : 750 —750
[50 ]  Dowdle P R , Laverman A M, Oremland R S. Applied and Environmental Microbiology , 1996 , 62 : 1664 —1669
[51 ]  Silver S , Phung L T, Rosen B P. Environmental Chemistry of Arsenic ( Eds. William T, Frankenberger J ) . New York : Marcel Dekker , 2002
[52 ]  Macur R E , Wheeler J T, McDermott T R , Inskeep W P.Environmental Science & Technology , 2001 , 35 : 3676 —3682
[53 ]  Cullen W R , Reimer KJ . Chemical Reviews , 1989 , 89 : 713 —764
[54 ]  Ji G Y, Silver S. Proceedings of the National Academy of Sciences of the United States of America , 1992 , 89 : 9474 —9478
[55 ]  Aurillo A C , Mason R P , Hemond H F. Environmental Science & Technology , 1994 , 28 : 577 —585
[56 ]  Turner A W. Nature , 1949 , 164 : 76 —77
[57 ]  Wood J M. Science , 1974 , 183 : 1049 —1052
[58 ]  Cummings D E , Caccavo F , Fendorf S , Rosenzweig R F.Environmental Science & Technology , 1999 , 33 : 723 —729
[59 ]  Campbell KM, Malasarn D , Saltikov C W, Newman D K, Hering J G. Environmental Science & Technology , 2006 , 40 : 5950 —5955
[60 ]  Coker V S , Gault A G, Pearce C I , van der Laan G, Telling N D ,Charnock J M, Polya D A , Lloyd J R. Environmental Science &Technology , 2006 , 40 : 7745 —7750
[61 ]  Herbel M, Fendorf S. Chemical Geology , 2006 , 228 : 16 —32
[62 ]  Islam F S , Pederick R L , Gault A G, Adams L K, Polya D A ,Charnock J M, Lloyd J R. Applied and Environmental Microbiology ,2005 , 71 : 8642 —8648
[63 ]  Kocar B D , Herbel M J , Tufano K J , Fendorf S. Environmental Science & Technology , 2006 , 40 : 6715 —6721
[64 ]  Pedersen H D , Postma D , Jakobsen R. Geochimica et Cosmochimica Acta , 2006 , 70 : 4116 —4129
[65 ]  Tufano KJ , Fendorf S. Environmental Science &Technology , 2008 ,42 : 4777 —4783
[66 ]  Meng X, Jing C , Korfiatis G P. Biogeochemistry of Environmentally Important Trace Elements ( Eds. Cai Y, Braids O C) . Washington ,DC: American Chemical Society , 2003
[67 ]  O’Day P A , Vlassopoulos D , Root R , Rivera N. Proceedings of the National Academy of Sciences of the United States of America , 2004 ,101 : 13703 —13708
[68 ]  Wang S L , Mulligan C N. Journal of Hazardous Materials , 2006 ,138 : 459 —470

[1] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[2] 郭丽君, 李瑞, 刘建新, 席庆, 樊彩梅. 半导体光催化分解水的析氢效率研究[J]. 化学进展, 2020, 32(1): 46-54.
[3] 左新钢, 张昊岚, 周同, 高长有. 调控细胞迁移和组织再生的生物材料研究[J]. 化学进展, 2019, 31(11): 1576-1590.
[4] 王训, 袁巍, 冯新斌. 森林生态系统汞的生物地球化学过程[J]. 化学进展, 2017, 29(9): 970-980.
[5] 高艳蓬, 李桂英, 马盛韬, 安太成*. 合成麝香的研究新进展与当前挑战:从人体护理、环境污染到人体健康[J]. 化学进展, 2017, 29(9): 1082-1092.
[6] 李旭光, 杜婷婷, 刘金, 刘新蕾, 马朋坤, 戚豫, 陈威*. 人工碳纳米材料的环境转化及其效应[J]. 化学进展, 2017, 29(9): 1021-1029.
[7] 金梨娟, 陈宝梁*. 环境中卤代有机污染物的自然来源、背景浓度及形成机理[J]. 化学进展, 2017, 29(9): 1093-1114.
[8] 韩林, 陈宝梁*. 环境持久性自由基的产生机理及环境化学行为[J]. 化学进展, 2017, 29(9): 1008-1020.
[9] 杨世迎, 任腾飞, 张艺萱, 郑迪, 辛佳. 水环境中ZVI/氧化剂体系及其电子迁移作用机制[J]. 化学进展, 2017, 29(4): 388-399.
[10] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.
[11] 徐杨, 熊英, 郭少云. 软质PVC制品中增塑剂迁移带来的问题及应对[J]. 化学进展, 2015, 27(2/3): 286-296.
[12] 朱瑾, 楼子墨, 王卓行, 徐新华. 铁锰氧化物/碳基复合材料的制备及其对水中砷的去除[J]. 化学进展, 2014, 26(09): 1551-1561.
[13] 张恒, 郑丽萍, 聂进, 黄学杰, 周志彬. 锂单离子导电固态聚合物电解质[J]. 化学进展, 2014, 26(06): 1005-1020.
[14] 阴永光, 李雁宾, 马旭, 刘景富, 江桂斌. 天然有机质介导的汞生物地球化学循环:结合作用与分子转化[J]. 化学进展, 2013, 25(12): 2169-2177.
[15] 宋静怡, 江浪*, 董焕丽, 胡文平*. 有机微纳晶场效应晶体管[J]. 化学进展, 2013, 25(01): 12-27.
阅读次数
全文


摘要

砷的生物地球化学