English
新闻公告
More
化学进展 2009, Vol. 21 Issue (0203): 288-296 前一篇   后一篇

• 环境化学专辑 •

大气二次细颗粒物形成机理的前沿研究*

叶兴南;陈建民**   

  1. (复旦大学环境科学与工程系大气化学研究中心 上海200433)
  • 收稿日期:2008-12-24 出版日期:2009-03-24 发布日期:2009-04-03
  • 通讯作者: 陈建民 E-mail:jmchen@fudan.edu.cn
  • 基金资助:

    国家自然科学基金

Advances in the Mechanism of Secondary Fine Particulate Matters Formation

Ye Xingnan;Chen Jianmin**   

  1. (Department of Environmental Science & Engineering , Fudan University , Shanghai 200433 , China)
  • Received:2008-12-24 Online:2009-03-24 Published:2009-04-03
  • Contact: Chen Jianmin E-mail:jmchen@fudan.edu.cn

大气二次颗粒物是影响大气辐射强迫和全球气候变化最不确定的因素之一。本文总结了大气二次细颗粒物的形成机制以及吸湿增长因子的研究进展。近年来,OH·、NO3·和O3光化学氧化形成二次细颗粒物的机制较为清晰,海盐和大气矿尘表面多相反应形成硫酸盐和硝酸盐等二次无机细颗粒物的研究取得可喜进展,尤其是发现海盐和大气矿尘混合物完全不同于单组分的多相反应机制。然而,二次有机颗粒物形成过程中能够鉴定出的有机组分很少,多相酸催化对形成二次颗粒物的促进作用尚未完全确定,多组分混合大气颗粒物的吸湿增长特性亦需进一步深入研究。

Secondary fine particulate matters (SFPM) is one of the most uncertain factors influencing on the radiative forcing and global climate changes. Recent progress regarding in the formation mechanisms and hygroscopic behavior of SFPM is summarized. Formation mechanism through photooxidation of volatile organic compounds, initiated by reaction with species such as the hydroxyl radical (OH·), nitrate radical (NO3·), and ozone (O3), is clear. Great progress has made recently on the heterogeneous formation mechanism of secondary fine inorganic particulate matters such as sulfate and nitrate on the sea salt and atmospheric dust, in particular, difference between single component and mixture of sea salt and dust. However, few organic compounds have been identified from secondary organic particulate matters formation as well as SFPM formation by heterogeneous acid-catalysis is uncertain. Further research on hygroscopic behavior of multicomponent mixture is required.

Contents
1 Introduction
2 Particle size distribution and chemical composition for atmospheric fine particulate matters
3 SFPM formation mechanism through atmospheric photooxidation
4 SFPM formation mechamnism through heterogeneous reaction
5 SFPM formation by heterogeneous acid-catalysis and promoting effect of inorganic seed
6 Hygroscopic behavior and atmospheric effect of SFPM

中图分类号: 

()

[ 1 ]  Pêschl U. Angew. Chem. Int . Ed. , 2005 , 44 : 7520 —7540
[ 2 ]  Atkinson R , Arey J . Chem. Reviews , 2003 , 103 : 4605 —4638
[ 3 ]  Koch S , Winterhalter R , Uherek E , et al . Atmos. Environ. , 2000 ,34 : 4031 —4042
[ 4 ]  Kamens R M, Jang M, Chien C , et al . Enviro. Sci . Technol . ,1999 , 33 : 1430 —1438
[ 5 ]  Tobias HJ , Ziemann P J . J . Phys. Chem. A , 2001 , 105 : 6129 —6135
[ 6 ]  Johnson D , Marston G. Chem. Soc. Rev. , 2008 , 37 : 699 —716
[ 7 ]  Lee S , Kamens R M. Atmos. Environ. , 2005 , 39 : 6822 —6832
[ 8 ]  Ma Y, Russell A T, Marston G. Phys. Chem. Chem. Phys. ,2008 , 10 : 4294 —4312
[ 9 ]  Pandis S N , Paulson S E , Seinfeld J H , et al . Atmos. Environ. ,1991 , 25 : 997 —1008
[10 ]  Claeys M, Graham B , Vas G, et al . Science , 2004 , 303 : 1173 -1176
[11 ]  Atkinson R. Atmos. Environ. , 2000 , 34 : 2063 —2101
[12 ]  Yong B L , Paul J Z. Environ. Sci . Technol . , 2005 , 39 : 9229 —9236
[13 ]  Hu D , Tolocka M, Li Q F , et al . Atmos. Environ. , 2007 , 41 :6478 —6496
[14 ]  Laskin A , Gaspar D J , Wang W H , et al . Science , 2003 , 301 :340 —344
[15 ]  Yu Y, Ezell J M, Zelenyuk A , Phys. Chem. Chem. Phys. , 2008 ,10 : 3063 —3071
[16 ]  Karagulian F , Dilbeck C W, Finlayson-Pitts B J ,J . Am. Chem.Soc. , 2008 , 130 : 11272 —11273
[17 ]  Usher C R , Al-Hosney H , Carlos-Cuellar S , et al . J . Geophys.Res. - Atmos. , 2002 , 107 : 4713 —4722
[18 ]  Goodman A L , Li P , Usher C R , et al . J . Phys. Chem. A. , 2001 ,105 : 6109 —6120
[19 ]  Ullerstam M, Vogt R , Langer S , et al . Phys. Chem. Chem. Phys. ,2002 , 4 : 4694 —4699
[20 ]  Li L , Chen Z M, Zhang Y H. Atmos. Chem. Phys. , 2006 , 6 :2453 —2464
[21 ]  Fu H B , Wang X, Wu H B. J . Phys. Chem. C , 2007 , 111 :6077 —6085
[22 ]  Zhang X Y, Zhuang G S , Chen J M. J . Phys. Chem. B , 2006 ,110 : 12588 —12596
[23 ]  Baltrusaitis J , Cwiertny D M, Grassian V H. Phys. Chem. Chem.Phys. , 2007 , 9 : 5542 —5554
[24 ]  Wang L , Zhang F , Chen J M. Environ. Sci . Technol . , 2001 , 35 :2543 —2547
[25 ]  Wu H B , Wang X, Chen J M. Chin. Sci . Bull . , 2004 , 49 :1231 —1235
[26 ]  Chen H H , Kong L D , Chen J M. Environ. Sci . Technol . , 2007 ,41 : 6484 —6490
[27 ]  Wang Y, Zhuang G S , Tang A H , et al . Atmos. Environ. , 2005 ,39 : 3771 —3784
[28 ]  Wang Y, Zhuang G S , Zhang X Y, et al . Atmos. Environ. , 2006 ,40 : 2935 —2952
[29 ]  Sun YL , Zhuang G S , Wang Y, et al . Atmos. Environ. , 2004 ,38 : 5991 —6004
[30 ]  Lee S H , Murphy D M, Thomson D S , et al . J . Geophys. Res. ,2002 , 107 : D1PD2 , art . no. 4003
[31 ]  Mamane Y, Gottlieb J . Atmos. Environ. , 1992 , 26A: 1763 —1769
[32 ]  Bêrensen C , Kirchner U , Scheer V , et al . J . Phys. Chem. , 2000 ,104 : 5036 —5045
[33 ]  Al-Hosney H A , Grassian V H. Phys. Chem. Chem. Phys. , 2005 ,7 : 1266 —12766
[34 ]  Hao L Q , Wang Z Y, Huang M Q. J . Environ. Sci . , 2007 , 19 :704 —708
[35 ]  吕子峰(LüZ F) , 郝吉明(Hao J M) , 李俊华(Li J H) 等. 化学学报(Acta Chimica Sinica) , 2008 , 66 : 419 —423
[36 ]  Jang M, Czoschke N M, Lee S. Science , 2002 , 298 : 814 —817
[37 ]  Surratt J D , Lewandowsk M, Offenberg J H. Environ. Sci .Technol . , 2007 , 41 : 5363 —5369
[38 ]  Jang M, Czoschke N M, Nortgcross A L. Environ. Sci . Technol . ,2006 , 40 : 3013 —3022
[39 ]  Zhang Q , Jimenez J L , Worsnop D R. Environ. Sci . Technol . ,2007 , 41 : 3213 —3219
[40 ]  Jang M, Kamens R. Environ. Sci . Technol . , 2001 , 35 : 4758 —4766
[41 ]  Liggio J , Li S M. Atmos. Chem. Phys. , 2008 , 8 : 2039 —2055
[42 ]  Czoschke N M, Jang M. Atmos. Environ. , 2006 , 40 : 4370 —4380
[43 ]  Czoschke N M, Myoseon Jang M, Kamens R M. Atmos. Environ. ,2003 , 37 : 4287 —4299
[44 ]  Jang M, Kamens R M. Environ. Sci . Technol . , 2001 , 35 : 3626 —3639
[45 ]  Wandowski M, Jaoui M, Kleindienst T E , et al . Atmos. Environ. ,2007 , 41 : 4073 —4083
[46 ]  Tolocka M P , Jang M, Ginter J M, et al . Environ. Sci . Technol . ,2004 , 38 : 1428 —1434
[47 ]  Jang M, Czoschke N M, Northcross A L. Chem. Phys. Chem. ,2004 , 5 : 1646 —1661
[48 ]  Levitt N P , Zhao J , Zhang R Y. J . Phys. Chem. A , 2006 , 110 :13215 —13220
[49 ]  Zhao J , Levitt N P , Zhang R Y. Environ. Sci . Technol . , 2006 ,40 : 7682 —7687
[50 ]  Adams P J , Seinfeld J H , Koch D , et al . J . Geophys. Res. , 2001 ,106 : 1097 —1111
[51 ]  Tang I N. Munkelwitz H R. J . Aerosol Sci . , 1977 , 8 : 321 —330
[52 ]  Rubel G. J . Aerosol Sci . , 1981 , 12 : 551 —558
[53 ]  Rader D J , McMurry P H. J . Aerosol Sci . , 1986 , 17 : 771 —787
[54 ]  Semeniuk T A , Wise M E , Martin S T, et al . J . Atmos. Chem. ,2007 , 56 : 259 —273
[55 ]  Gibson E R , Hudson P K, Grassian V H. J . Phys. Chem. A ,2006 , 110 : 11785 —11799
[56 ]  Swietlicki E , Hansson H C , Meri K. Tellus , 2008 , 60B : 432 —469
[57 ]  Cruz C N , Pandis S N. Environ. Sci . Technol . , 2000 , 34 : 4313 —4319
[58 ]  Bahadur R , Russell L M. Aerosol Sci . Technol . , 2008 , 42 : 1 —8
[59 ]  Gysel M, Weingartner E , Nyeki S , et al . Atmos. Chem. Phys. ,2004 , 4 : 35 —50
[60 ]  Choi M Y, Chan C K. Journal of Physical Chemistry A , 2002 , 106 :4566 —4572
[61 ]  Marcolli C , Luo B P , Peter T. J . Phys. Chem. A , 2004 , 108 :2216 —2224
[62 ]  Jordanov N , Zellnerb R. Phys. Chem. Chem. Phys. , 2006 , 8 :2759 —2764
[63 ]  Zhang Y H , Chan C K. J . Phys. Chem. A , 2002 , 106 : 285 —292
[64 ]  Sjogren S , Gysel M, Weingartner E , et al . Aerosol Sci . , 2007 , 38 :157 —171
[65 ]  Shi Z B , Zhang D Z, Hayashi M. Atmos. Environ. , 2008 , 42 :822 —827
[66 ]  Herich H , Kammermann L , Gysel M. J . Geophys. Res. Atmos. ,2008 , 113 : D16 , art . no. D16213

[1] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[4] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[5] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[6] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[7] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[8] 钟佳利, 王炜罡, 彭超, 马楠, 吴志军, 葛茂发. 大气气溶胶吸湿性及其对环境的影响[J]. 化学进展, 2022, 34(4): 801-814.
[9] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[10] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.
[11] 张柏林, 张生杨, 张深根. 稀土元素在脱硝催化剂中的应用[J]. 化学进展, 2022, 34(2): 301-318.
[12] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 白文己, 石宇冰, 母伟花, 李江平, 于嘉玮. Cs2CO3辅助钯催化X—H (X=C、O、N、B)官能团化反应的理论计算研究[J]. 化学进展, 2022, 34(10): 2283-2301.
[15] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.