English
新闻公告
More
化学进展 2008, Vol. 20 Issue (10): 1621-1627 前一篇   后一篇

• 综述与评论 •

超声-光催化降解水中有机污染物*

王颖 牛军峰** 张哲贇 隆兴兴   

  1. (北京师范大学环境学院水环境模拟国家重点实验室 北京 100875)

  • 收稿日期:2007-11-07 修回日期:2008-01-10 出版日期:2008-10-24 发布日期:2008-10-25
  • 通讯作者: 牛军峰

Sono-photocatalytic Degradation of Organic Pollutants in Water

Wang Ying; Niu Junfeng**; Zhang Zheyun; Long Xingxing   

  1. (The State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China)

  • Received:2007-11-07 Revised:2008-01-10 Online:2008-10-24 Published:2008-10-25
  • Contact: Niu Junfeng
超声-光催化是一项近年发展起来的废水处理的新型高级氧化技术。该技术利用超声的空化效应、自由基效应以及机械效应强化光催化的催化效能,实现超声和光催化对水中有机污染物的协同降解。本文从水中有机污染物的超声-光催化降解机理、降解动力学、影响因素(光催化剂类型和投加量、超声频率和强度、溶液pH值、温度、反应物初始浓度、溶解性气体和离子强度)和反应器类型(悬浮型、固定床型)4个方面介绍了相关研究进展,提出了目前存在的主要问题,并展望了超声-光催化降解水中有机污染物的发展方向。

Sono-photocatalytic degradation of organic pollutants in wastewater is a newly-developed Advanced Oxidateion Processes (AOPs). In this process, the efficiency of photocatalysis is promoted by ultrasonic cavitation, free-radical and mechanical effects, and thus synergetic degradation of organic pollutants in wastewater is achieved. The sono-photocatalytic combined process displays a big potential because of its advantages such as simpleness, environmentally friendly and widely applications. In this paper, degradation mechanism, kinetics, influence factors (the type and concentration of photocatalyst, ultrasonic frequency and intensity, pH values, temperature, initial concentration of organic pollutants, dissolved gas and ionic strength) the type of reactor (suspension and fix bed) for the sono-photocatalytic combined process are reviewed. The main problems and prospect of sono-photocatalytic combined process for wastewater treatment are presented.

中图分类号: 

()

[ 1 ] Hiskia A , Mylonas A , Papaconstantinou E. Chem. Soc. Rev. ,2001 , 30(1) : 62 —69
[ 2 ] Cheng Y P , Sun H Q , Jin W Q , et al . Chem. Eng. J . , 2007 ,128 : 127 —133
[ 3 ] Papadaki M, Emery R J , Abu-Hassan M A , et al . Sep. Purif .Technol . , 2004 , 34 : 35 —42
[ 4 ] Adewuyi Y G. Environ. Sci . Technol . , 2005 , 39 : 8557 —8570
[ 5 ] Pera-Titus M, Garcia-Molina V , Banos M A , et al . Appl . Catal .B : Environ. , 2004 , 47 : 219 —256
[ 6 ] Wu C H , Chang C L. J . Hazard. Mater. , 2006 , 128 : 265 —272
[ 7 ] Davydov L , Reddy E P , France P , et al . Appl . Catal . B :Environ. , 2001 , 32 : 95 —105
[ 8 ] Shimizu N , Ogino C , Dadjour M F , et al . Ultrason. Sonochem. ,2007 , 14 : 184 —190
[ 9 ] Ragaini V. Ultrason. Sonochem. , 2001 , 8 : 251 —258
[10] Andronic L , Duta A. Thin Solid Films , 2007 , 515 : 6294 —6297
[11] Gogate P R , Pandit A B. AIChEJ . , 2004 , 50(5) : 1051 —1079
[12] Wang J , Ma T , Zhang Z H , et al . Catal . Commun. , 2007 , 8 :118 —122
[13] Hao H W, Chen Y F , Wu M S , et al . Ultrason. Sonochem. ,2004 , 11(1) : 43 —46
[14] Suslick K S , Hammerton D A. Ferroelectrics and Frequency Control , 1986 , 33 : 143 —150
[15] Joseph J M, Destaillats H , Hung H M, et al . J . Phys. Chem.A , 2000 , 104 : 301 —307
[16] Adewuyi Y G. Ind. Eng. Chem. Res. , 2001 , 40 : 4681 —4715
[17] Ashokkumar M, Lee J , Kentish S , et al . Ultrason. Sonochm. ,2007 , 14 : 470 —475
[18] Hua I , Hoffmann M R. Environ. Sci . Technol . , 1996 , 30 :864 —871
[19] Rajan R , Kumar R , Gandhi KS. Environ. Sci . Technol . , 1998 ,32 : 1128 —1133
[20] Chakinala A G, Gogate P R , Burgess A E , et al . Ultrason.Sonochem. , 2007 , 14 : 509 —514
[21] Turchi C S , Ollis D F. J Catal . , 1990 , 122 (1) : 178 —192
[22] 唐玉朝(Tang Y C) , 胡春(Hu C) , 王怡中(Wang Y Z) . 化学进展(Progress in Chemistry) , 2002 , 14(3) : 192 —199
[23] Hoffmann M R , Martin S T , Choi W, et al . Chem. Rev. , 1995 ,95 : 69 —96
[24] Linsebigler A L , Lu G Q , Yates J T. Chem. Rev. , 1995 , 95 :735 —758
[25] Peller J , Wiest O , Kamat P. Environ. Sci . Technol . , 2003 , 37 :1926 —1932
[26] Hirano K, Nitta H , Sawada K. Ultrason. Sonochem. , 2005 , 12 :271 —276
[27] Selli E. Phys. Chem. Chem. Phys. , 2002 , 4 : 6123 —6128
[28] Stock N L , Peller J , Vinodgopal K, et al . Environ. Sci .Technol . , 2000 , 34 : 1747 —1750
[29] Shirgaonkar I Z , Pandit A B. Ultrasonics Sonochemistry , 1998 ,5 : 53 —61
[30] Chen Y C , Smirniotis P. Ind. Eng. Chem. Res. , 2002 , 41 :5958 —5965
[31] Chen L , Zhou H Y, Deng Q Y. Chemosphere , 2007 , 68 : 354 —359
[32] 苑宝玲(Yuan B L) , 王洪杰(Wang H J) . 水处理新技术原理与应用( Principle and Application of New Water Treatment Technology) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2006. 43 —44
[33] Mrowetz M, Pirola C , Selli E. Ultrason. Sonochem. , 2003 , 10 :247 —254
[34] An T , Gu H , Xiong Y, et al . J . Chem. Technol . Biotechnol . ,2003 , 78 : 1142 —1148
[35] Guillard C , Theron P , Pichat P , et al . Water Res. , 2002 , 36(17) : 4263 —4272
[36] Ollis D F , Pelizzetti E , Serpone N. Photocatalysis : Fundamental and Applications. New York : Wiley , 1989. 603 —637
[37] Kramble S P , Sawant S B , Pangarkar V G. Ind. Eng. Chem.Res. , 2003 , 42 : 6705 —6713
[38] Wang J , Ma T , Zhang Z H , et al . Desalination , 2006 , 195 :294 —305
[39] Kaur S , Singh V. Ultrason. Sonochem. , 2007 , 14 : 531 —537
[40] Kubo M, Fukuda H , Chua X J , et al . Ind. Eng. Chem. Res. ,2007 , 46 : 699 —704
[41] Méndez M A , Cano A , Suárez M F. Ultrason. Sonochem. , 2007 ,14 : 337 —342
[42] Theron P , Pichat P , Petrier C , et al . Water Sci . , 2001 , 44 :263 —270
[43] Nakajima A , Tanaka M, Kameshima Y, et al . J . Photochem.Photobiol . A: Chem. , 2004 , 167 : 75 —79
[44] Matsuzawa S , Tanaka J , Sato S , et al . J . Photochem. Photobiol .A: Chem. , 2002 , 149 : 183 —189
[45] Bertelli M, Selli E. Appl . Catal . B : Environ. , 2004 , 52 :205 —212
[46] Wang J , Guo B D , Zhang X D , et al . Ultrason. Sonochem. ,2005 , 12 : 331 —337
[47] Yano J , Matsuura J , Ohura H , et al . Ultrason. Sonochem. ,2005 , 12 : 197 —203
[48] Kanthale P M, Gogate P R , Pandit A B. Chem. Eng. J . , 2007 ,127 : 71 —79
[49] Zhu C P , Feng R , Zhao Y Y. Chin. Sci . Bull . , 2000 , 45 :142 —144
[50] Feng R , Zhao Y, Zhu C , et al . Ultrason. Sonochem. , 2002 , 9 :231 —236
[51] Wu C , Wei D , Fan J , et al . Chemosphere , 2001 , 44 : 1293 —1297
[52] Sivakumar M, Pandit A B. Ultrason. Sonochem. , 2001 , 8 :233 —240
[53] Kritikos D E , Xekoukoulotakis N P , Psillakis E , et al . Water Res. , 2007 , 41 : 2236 —2246
[54] Wang J , Ma T , Zhang Z H , et al . Ultrason. Sonochem. , 2007 ,14 : 575 —582
[55] Zhang G M, Hua I. Environ. Sci . Technol . , 2000 , 34 : 1529 —1534
[56] Appaw C , Adewuyi Y G. J . Hazard. Mater. , 2002 , 90 : 237 —249
[57] Mahamuni N N , Pandit A B. Ultrason. Sonochem. , 2006 , 13 :165 —174
[58] Haarstrick A , Kut O M, Heinzle E. Environ. Sci . Technol . ,1996 , 30(3) : 817 —824
[59] Wang K H , Hsieh Y H , Wu C H , et al . Chemosphere , 2000 ,40 : 389 —394
[60] Neppolian B , Choi H C , Sakthivel S , et al . Chemosphere , 2002 ,46(8) : 1173 —1181
[61] Gogate P R. Adv. Environ. Res. , 2002 , 6(3) : 335 —358

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[7] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[8] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[9] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[10] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[11] 王楠, 周宇齐, 姜子叶, 吕田钰, 林进, 宋洲, 朱丽华. 还原-氧化协同降解全/多卤代有机污染物[J]. 化学进展, 2022, 34(12): 2667-2685.
[12] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[13] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[14] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[15] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.