English
新闻公告
More
化学进展 2008, Vol. 20 Issue (10): 1553-1561 前一篇   后一篇

• 综述与评论 •

超临界水气化有机物制氢研究*

晏波1,2 韦朝海2**   

  1. (1. 中国科学院广州地球化学研究所 广州 510640; 2. 华南理工大学环境科学与工程学院 广州510006)

  • 收稿日期:2007-11-26 修回日期:2008-01-30 出版日期:2008-10-24 发布日期:2008-10-25
  • 通讯作者: 韦朝海

Hydrogen Production from Organic Compounds by Supercritical Water Gasification

Yan Bo1,2 Wei Chaohai2**   

  1. (1. Guangzhou Institute of Geochemistry, Chinese Acadeniy of Sciences, Guangzhou 510640, China; 2. College of Environmental Science and Engineering, South China University of Technology, Guangzhou, 510006, China)
  • Received:2007-11-26 Revised:2008-01-30 Online:2008-10-24 Published:2008-10-25
  • Contact: Wei Chaohai
针对一些有机物的超临界水气化(SCWG)制氢过程,分别概述了模型有机物如葡萄糖、甲醇、纤维素、木质素和真实生物质及有机废物/水的影响因素、中间产物及反应路径;分析了均相催化剂如碱、碱金属盐和非均相催化剂如ZrO2、活性碳、贵金属、过渡金属的催化气化效率及催化机理,并指出非均相催化SCWG过程是SCWG技术的重要发展方向;对SCWG制氢过程热力学进行初步的讨论;简要介绍了目前世界上的3套SCWG制氢中试装置的运行情况,提出SCWG过程工业化应用的难点及未来技术的发展方向。
Hydrogen can be obtained from organic compounds by Supercritical Water Gasification (SCWG). In this paper, the influence factors, intermediates and reaction pathway of glucose, methanol, cellulose, lignin, real biomass and organic waste/wastewater by SCWG are summarized. The effect of catalyst such as alkali metals, ZrO2, activated carbon, noble and transition metal on gasification efficiency and gasification mechanism is illustrated and which is suggested that the study of heterogeneous catalytic reaction is very important for the development of SCWG. The thermodynamics of SCWG is analysed, the difficulty for scale-up of SCWG is discussed and three pilot-scale SCWG units in the world are introduced. The research trends in SCWG are proposed.

中图分类号: 

()

[ 1 ] Williams P T , Onwudili J . Ind. Eng. Chem. Res. , 2005 , 44(23) : 8739 —8749
[ 2 ] Boukis N , Diem V , Habicht W, et al . Ind. Eng. Chem. Res. ,2003 , 42(4) : 728 —735
[ 3 ] Minowa T , Inoue S. Renewable Energy , 1999 , 16(1P4) : 1114 —1117
[ 4 ] Tang H Q , Kitagawa K. Chem. Eng. J . , 2005 , 106(3) : 261 —267
[ 5 ] Kruse A , Krupka A , Schwarzkopf V , et al . Ind. Eng. Chem.Res. , 2005 , 44(9) : 3013 —3020
[ 6 ] Matsumura Y, Minowa T , Poti B , et al . Biomass Bioenergy ,2005 , 29(4) : 269 —292
[ 7 ] Penninger J M L , Maass G J J , Rep M. Int . J . Hydrogen Energy ,2007 , 32(10P11) : 1472 —1476
[ 8 ] Calzavara Y, Joussot-Dubien C , Boissonnet G, et al . Energy Convers. Manage. , 2005 , 46(4) : 615 —631
[ 9 ] Elliott D C , Nenuenschwande G G, Phelps M R , et al . Ind.Eng. Chem. Res. , 1999 , 38(3) : 879 —883
[10] Elliott D C , Nenuenschwande G G, Hart T R , et al . Ind. Eng.Chem. Res. , 2004 , 43(9) : 1999 —2004
[11] Matsumura Y. Energy Convers. Manage. , 2002 , 43 ( 9/12 ) :1301 —1310
[12] Modell M. Gasification and Liquefaction of Forest Products in Supercritical Water. In Fundamentals of Thermochemical Biomass(eds. Overend R P , Milne T A , Mudge L K) . London : Elsevier Applied Science Publisher , 1985. 95 —119
[13] Yu D H , Aihara M, Antal M J Jr. Energy &Fuels , 1993 , 7(5) :574 —577
[14] Kabyemela B M, Adschiri T , Malaluan R M, et al . Ind. Eng.Chem. Res. , 1999 , 38(8) : 2888 —2895
[15] Lee I G, Kim M S , Ihm S K. Ind. Eng. Chem. Res. , 2002 , 41(5) : 1182 —1188
[16] Watanabe M, Inomata H , Arai K. Biomass Bioenergy , 2002 , 22(5) : 405 —410
[17] Hao X H , Guo L J , Mao X, et al . Int . J . Hydrogen Energy ,2003 , 28(1) : 55 —64
[18] S¥naˇg A , Kruse A , Schwarzkopf V. Ind. Eng. Chem. Res. ,2003 , 42(15) : 3516 —3521
[19] S¥naˇg A , Kruse A , Rather J . Ind. Eng. Chem. Res. , 2004 , 43(2) : 502 —508
[20] Williams P T , Onwudili J . Energy & Fuels , 2006 , 20 ( 3 ) :1259 —1265
[21] 闫秋会(Yan Q H) , 郭烈锦(Guo L J) , 张西民(Zhang X M)等. 化工学报(Journal of Chemical Industry and Engineering) ,2004 , 55 : 1916 —1920
[22] 毛肖岸(Mao X A) , 郭烈锦(Guo L J) , 张西民(Zhang X M)等. 化学工程(Chemical Engineering) , 2004 , 5 : 25 —28
[23] Yan Q H , Guo L J , Lu Y J . Energy Convers. Manage. , 2006 ,47(11/12) : 1515 —1528
[24] Lu Y J , Guo L J , Ji C M, et al . Int . J . Hydrogen Energy , 2006 ,31(7) : 822 —831
[25] Lu Y J , Guo L J , Zhang X M, et al . Chem. Eng. J . , 2006 , 131(1/3) : 233 —244
[26] Gadhe J B , Gupta R. Ind. Eng. Chem. Res. , 2005 , 44 (13) :4577 —4585
[27] Dileo G, Savage P E. J . Supercrit . Fluids , 2006 , 39(2) : 228 —232
[28] Gadhe J B , Gupta R B. Int . J . Hydrogen Energy , 2007 , 32(13) : 2374 —2381
[29] Minowa T , Ogi T. Catalysis Today , 1998 , 45(4) : 411 —416
[30] Minowa T , Zang F , Ogi T. J . Supercrit . Fluids , 1998 , 13 (1/3) : 253 —259
[31] Matsumura Y, Nonaka H , Yokura H , et al . Fuel , 1999 , 78(9) :1049 —1056
[32] Yoshida T , Matsumura Y. Ind. Eng. Chem. Res. , 2001 , 40(23) : 5469 —5474
[33] Osada M, Sato T , Watanabe M, et al . Energy &Fuels , 2004 , 18(2) : 327 —333
[34] Sasaki M, Adschiri T , Arai K. AIChE Journal , 2004 , 50 (1) :192 —202
[35] 毛肖岸(Mao X A) , 郝小红(Hao X H) , 郭烈锦( Guo L J )等. 工程热物理学报(Journal of Engineering Thermophysics) ,2003 , 24(3) : 388 —390
[36] 关宇(Guan Y) , 郭烈锦(Guo L J) , 张西民(Zhang X M) 等.化工学报( Journal of Chemical Industry and Engineering) ,2006 , 57(6) : 1426 —1431
[37] Watanabe M, Inomataa H , Osada M. Fuel , 2003 , 82(5) : 545 —552
[38] Sato T , Furusawa T , Ishiyama Y, et al . Ind. Eng. Chem. Res. ,2006 , 45(2) : 615 —622
[39] Osada M, Sato O , Watanabe M, et al . Energy &Fuels , 2006 , 20(3) : 930 —935
[40] Osada M, Hiyoshi N , Sato O , et al . Energy & Fuels , 2007 , 21(3) : 1400 —1405
[41] Osada M, Hiyoshi N , Sato O , et al . Energy & Fuels , 2007 , 21(4) : 1854 —1858
[42] Xu X D , Matsumura Y, Antal M J Jr , et al . Ind. Eng. Chem.Res. , 1996 , 35(8) : 2522 —2530
[43] Antal M J Jr , Allen S G, Schulman D , et al . Ind. Eng. Chem.Res. , 2000 , 39(11) : 4040 —4053
[44] D’Jesús P , Artiel C , Boukis N , et al . Ind. Eng. Chem. Res. ,2005 , 44(24) : 9071 —9077
[45] D’Jesús P , Boukis N , Kraushaar-Czarnetzki B , et al . Ind. Eng.Chem. Res. , 2006 , 45(5) : 1622 —1630
[46] D’Jesús P , Boukis N , Kraushaar-Czarnetzki B , et al . Fuel ,2006 , 85(7P8) : 1032 —1038
[47] Gasafi E , Meyer L , Schebek L. Int . J . Energy Res. , 2007 , 31(4) : 346 —363
[48] Güngêren T , Saˇglam M, Yüksel M, et al . Ind. Eng. Chem.Res. , 2007 , 46(4) : 1051 —1057
[49] Yanik J , Ebale S , Kruse A , et al . Fuel , 2007 , 86(15) : 2410 —2415
[50] Hashaikeh R , Butler I S , Kozinski J A. Energy & Fuels , 2006 ,20(6) : 2743 —2747
[51] Vostrikov A A , Psarov S A , Dubov D Y, et al . Energy &Fuels ,2007 , 21(5) : 2840 —2845
[52] 吕友军(Lü Y J) , 郭烈锦(Guo L J) , 郝小红(Hao X H) 等.化工学报( Journal of Chemical Industry and Engineering) ,2004 , 55(2) : 2060 —2066
[53] 闫秋会(Yan Q H) , 郭烈锦(Guo L J ) , 梁兴(Liang X) 等.太阳能学报(ACTA Energiae Solaris Sinica) , 2005 , 26 (6) :874 —877
[54] 闫秋会(Yan Q H) , 郭烈锦(Guo L J ) , 梁兴(Liang X) 等.西安交通大学学报(Journal of Xi’an Jiaotong University) ,2005 , 39(5) : 454 —457
[55] 吕友军(Lü Y J) , 冀承猛(Ji C M) , 郭烈锦( Guo L J ) . 西安交通大学学报(Journal of Xi’an Jiaotong University) , 2005 ,39(3) : 238 —242
[56] 郝小红(Hao X H) , 郭烈锦(Guo L J) , 吕友军(Lü Y J) 等.西安交通大学学报(Journal of Xi’an Jiaotong University) ,2005 , 39(7) : 681 —684
[57] 裴爱霞(Pei A X) , 郭烈锦(Guo L J ) , 金辉(Jin H) . 西安交通大学学报(Journal of Xi’an Jiaotong University) , 2006 ,40(11) : 1263 —1267
[58] 闫秋会(Yan Q H) , 郭烈锦(Guo L J ) , 梁兴(Liang X) . 西安交通大学学报(Journal of Xi’an Jiaotong University) , 2006 ,40(5) : 506 —509
[59] 吕友军(Lü Y J) , 张西民(Zhang X M) , 郭烈锦( Guo L J )等. 太阳能学报(ACTA Energiae Solaris Sinica) , 2006 , 27(4) : 335 —339
[60] 任辉(Ren H) , 张荣(Zhang R) , 王锦凤(Wang J F) 等. 燃料化学学报(Journal of Fuel Chemistry and Technology) , 2003 ,31(6) : 595 —599
[61] 郭烈锦(Guo L J ) , 张西民(Zhang X M) , 冀承猛(Ji C M)等. 东莞理工学院学报(Journal of Dongguan University of Technology) , 2006 , 13(4) : 34 —38
[62] 吴君章(Wu J Z) , 晏波(Yan B) , 何凤媚(He F M) 等. 化工学报(Journal of Chemical Industry and Engineering) , 2008 ,59(3) :743 —750
[63] 晏波(Yan B) , 胡成生(Hu C S) , 韦朝海(Wei C H) 等. 环境化学(Environmental Chemistry) , 2006 , 25(3) : 301 —305
[64] Wei C H , Hu C S , Yan B , et al . J . Environ. Sci . , 2006 , 18(4) : 644 —649
[65] Yan B , Wei C H , Hu C S , et al . J . Environ. Sci . , 2007 , 19(12) : 1424 —1429
[66] Watanabe M, Sato T , Inomata H , et al . Chem. Rev. , 2004 , 104(12) : 5803 —5821
[67] Elliott D C , Sealock L J Jr. Ind. Eng. Chem. Prod. Res. Dev. ,1983 , 22(3) : 426 —431
[68] Elliott D C , Hallen R T , Sealock L J Jr. Ind. Eng. Chem. Prod.Res. Dev. , 1983 , 22(3) : 431 —435
[69] Elliott D C , Sealock L J Jr , Butner R S. Ind. Eng. Chem. Prod.Res. Dev. , 1986 , 25(4) : 541 —549
[70] Kruse A , Meier D , Rimbrecht P , et al . Ind. Eng. Chem. Res. ,2000 , 39(12) : 4842 —4848
[71] Schmieder H , Boukis N , Kruse A , et al . J . Supercrit . Fluids ,2000 , 17(2) : 145 —153
[72] 程乐明(Cheng L M) , 张荣(Zhang R) , 毕继成(Bi J C) . 化工学报(Journal of Chemical Industry and Engineering) , 2004 ,55(Supply) : 44 —49
[73] Wang J , Takarada T. Energy &Fuels , 2001 , 15(2) : 356 —362
[74] Lin S Y, Suzuki Y, Hatano H , et al . Energy &Fuels , 2001 , 15(2) : 339 —343
[75] Lin S Y, Suzuki Y, Hatano H. Energy Convers. Manage. , 2002 ,43(9/12) : 1283 —1290
[76] 任辉(Ren H) , 张荣(Zhang R) , 孙东凯(Sun D K) 等. 化工学报(Journal of Chemical Industry and Engineering) , 2004 , 55(Supply) : 50 —53
[77] Cheng L M, Zhang R , Bi J C. J . Fuel Chem. Technol . , 2007 ,35(3) : 257 —261
[78] Tomishige K, Sakaihori T , Ikeda Y, et al . Catal . Lett . , 1999 ,58(4) : 225 —229
[79] Elliott D C , Sealock L J Jr , Baker E G. Ind. Eng. Chem. Res. ,1993 , 32(8) : 1542 —1548
[80] Matsumura Y, Xu X D , Antal M J Jr. Carbon , 1997 , 35 (6) :819 —824
[81] Cortright R D , Davda R , Dumesic J A. Nature , 2002 , 418(29) :964 —967
[82] Park K C , Tomiyasu H. Chem. Commun. , 2003 , 694 —695
[83] Byrd AJ , Pant K K, Gupta R B. Ind. Eng. Chem. Res. , 2007 ,46(11) : 3574 —3579
[84] Sato T , Osada M, Watanabe M, et al . Ind. Eng. Chem. Res. ,2003 , 42(19) : 4277 —4282
[85] Elliott D C , Phelps M R , Sealock L J Jr , et al . Ind. Eng.Chem. Res. , 1994 , 33(3) : 566 —574
[86] Kersten S R A , Potic B , Prins W, et al . Ind. Eng. Chem.Res. , 2006 , 45(12) : 4169 —4177
[87] Elliott D C , Sealock L J Jr , Baker E G. Ind. Eng. Chem. Res. ,1994 , 33(3) : 558 —565
[88] Yoshida T , Oshima Y, Matsumura Y. Biomass Bioenergy , 2004 ,26(1) : 71 —78
[89] Yoshida T. Ind. Eng. Chem. Res. , 2004 , 43(15) : 4097 —4104
[90] Furusawa T , Sato T , Sugito H , et al . Int . J . Hydrogen Energy ,2007 , 32(6) : 699 —704
[91] Furusawa T , Sato T , Saito M, et al . Applied Catalysis A:General , 2007 , 327 (2) : 300 —310
[92] DiLeo G J , Neff M E , Savage P E. Energy & Fuels , 2007 , 21(4) : 2340 —2345
[93] Feng W, van der Kooi H J , Arons J D. Chem. Eng. and Process ,2004 , 43(12) : 1459 —1467
[94] Feng W, van der Kooi H J , Arons J D. Chem. Eng. J . , 2004 ,98(1/2) : 105 —113
[95] Lei Y, Feng X, Min S. Appl . Therm. Eng. , 2007 , 27 (13) :2324 —2331
[96] Boukis N , Galla U , D’Jesús P. Joint 20th AIRAPT—43th EHPRG, Karlsruhe , Germany , 2005
[97] Potic B , van de Beld L , Asink D , et al . 12th European Conference and Exhibition on Biomass for Energy , Industry and Climate Protection , Amsterdam, 2002

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
阅读次数
全文


摘要

超临界水气化有机物制氢研究*