English
新闻公告
More
化学进展 2008, Vol. 20 Issue (10): 1515-1524 前一篇   后一篇

• 综述与评论 •

阳离子型稀土金属有机化合物*

郁楠1,2 侯召民2** 席振峰1**

  

  1. (1. 北京大学化学与分子工程学院 北京 100871;
    2.日本理化学研究所金属有机化学研究室 日本和光市 3510198)
  • 收稿日期:2008-01-29 修回日期:2008-03-10 出版日期:2008-10-24 发布日期:2008-10-25
  • 通讯作者: 席振峰

Cationic Complexes of Rare Earth Metals

Yu Nan1,2 Hou Zhaomin2** Xi Zhenfeng1**

  

  1. (1. College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; 2. Organometallic Chemistry Laboratory, the Institute of Physical and Chemical Research, Japan)
  • Received:2008-01-29 Revised:2008-03-10 Online:2008-10-24 Published:2008-10-25
  • Contact: Xi Zhenfeng
阳离子型金属有机化合物是催化烯烃聚合反应的活性物种,其结构与性质直接影响所得聚合物的微观结构和性能,具有重要的研究价值。对四族金属有机化合物的深入研究也推动了对其他前过渡金属和稀土金属有机化合物的研究。与为数众多的中性及阴离子型稀土金属有机化合物相比,由于具有较高的反应性、合成与分离不易,阳离子型稀土金属有机化合物直到最近才逐渐得到重视。本文介绍了近年来在阳离子型稀土金属有机化合物的合成、结构和催化烯烃聚合反应领域的研究进展。
The cationic complexes of transition metals serve as catalytically active species for olefin polymerization. Their structures and properties directly influence the resulting polymers in terms of microstructure and function. The intensive investigation about cationic alkyl complexes of group 4 metals has recently prompted interest in cationic early transition metal complexes and rare earth metal complexes. In contrast to the large number of neutral and anionic complexes of rare earth metals, the cationic complexes have remained scarce until recently due to their high reactivity and synthetic difficulties. This review summarizes the recent progress in the synthesis, structural characterization and olefin polymerization catalysis of these cationic complexes of rare earth metals.

中图分类号: 

()

[ 1 ] Gibson V C , Spitzmesser S K. Chem. Rev. , 2003 , 103 :283 —316
[ 2 ] Metalorganic Catalysts for Synthesis and Polymerization : Recent Results by Ziegler-Natta and Metallocene Investigations ( ed.Kaminsky W) . Berlin : Springer2Verlag , 1999
[ 3 ] McKnight A L , Waymouth R M. Chem. Rev. , 1998 , 98 :2587 —2598
[ 4 ] Bochmann M. J . Chem. Soc. Dalton Trans. , 1996 , 255 —270
[ 5 ] Jordan R F. Adv. Organomet . Chem. , 1991 , 32 : 325 —387
[ 6 ] Chen E Y X, Marks TJ . Chem. Rev. , 2000 , 100 : 1391 —1434
[ 7 ] Zeimentz P M, Arndt S , Elvidge B R , Okuda J . Chem. Rev. ,2006 , 106 : 2404 —2433
[ 8 ] Hou Z M, Luo Y J , Li X F. J . Organomet . Chem. , 2006 , 691 :3114 —3121
[ 9 ] Gromada J , Carpentier J F , Mortreux A. Coord. Chem. Rev. ,2004 , 248 : 397 —410
[10] Arndt S , Okuda J . Adv. Synth. Catal . , 2002 , 347 : 339 —354
[11] Piers W E , Emslie D J H. Coord. Chem. Rev. , 2002 , 233/234 :131 —155
[12] Hou Z M, Wakatsuki Y. Coord. Chem. Rev. , 2002 , 231 :1 —22
[13] Song X, Thornton-Pett M, Bochmann M. Organometallics , 1998 ,17 : 1004 —1006
[14] Barsan F , Baird M C. J . Chem. Soc. Chem. Commun. , 1995 ,1065 —1065
[15] Kaita S , Yamanaka M, Horiuchi A C , Wakatsuki Y.Macromolecules , 2006 , 39 : 1359 —1363
[16] Bouwkamp M W, Budzelaar P H M, Gercama J , et al . J . Am.Chem. Soc. , 2005 , 127 : 14310 —14319
[17] Evans W J , Seibel C A , Ziller J W. J . Am. Chem. Soc. , 1998 ,120 : 6745 —6752
[18] Evans W J , Davis B L , Ziller J W. Inorg. Chem. , 2001 , 40 :6341 —6348
[19] Evans W J , Perotti J M, Ziller J W. J . Am. Chem. Soc. , 2005 ,127 : 3894 —3909
[20] Evans W J , Perotti J M, Kozimor S A , et al . Organometallics ,2005 , 24 : 3916 —3931
[21] Evans W J , Davis B L , Ziller J W. Inorg. Chem. , 2001 , 40 :6341 —6348
[22] Evans W J , Davis B L. Chem. Rev. , 2002 , 102 : 2119 —2136
[23] Evans W J , Ulibarri T A , Chamberlain L R , Ziller J W, Alvarez D. Organometallics , 1990 , 9 : 2124 —2130
[24] Evans W J , Perotti J M, Kozimor S A , et al . Organometallics ,2005 , 24 : 3916 —3931
[25] Evans W J , Perotti J M, Brady , J C , Ziller J W. J . Am. Chem.Soc. , 2003 , 125 : 5204 —5212
[26] Schaverien C J . Organometallics , 1992 , 11 : 3476 —3478
[27] Luo Y J , Baldamus J , Hou Z M. J . Am. Chem. Soc. , 2004 ,126 : 13910 —13911
[28] Li X F , Baldamus J , Hou Z M. Angew. Chem. Int . Ed. , 2005 ,44 : 962 —965
[29] Li X F , Hou Z M. Macromolecules , 2005 , 38 : 6767 —6769
[30] Zhang L X, Luo Y, Hou Z M. J . Am. Chem. Soc. , 2005 , 127 :14562 —14563
[31] Yu N , Nishiura M, Li X F , Xi Z F , Hou ZM. Chem. Asian J . ,2008 , 3 : 1406 —1414
[32] Li X F , Nishiura M, Mori K, Mashiko T , Hou Z M. Chem.Commun. , 2007 , 4137 —4139
[33] Li X F , Baldamus J , Nishiura M, Tardif O , Hou Z M. Angew.Chem. Int . Ed. , 2006 , 45 : 8184 —8188
[34] Bambirra S , van Leusen D , Meetsma A , Hessen B , Teuben J H.Chem. Commun. , 2003 , 522 —523
[35] Bambirra S , Bouwkamp M W, Meetsma A , Hessen B. J . Am.Chem. Soc. , 2004 , 126 : 9182 —9183
[36] Lee L W M, Piers W E , Elsegood M R J , Clegg W, Parvez M.Organometallics , 1999 , 18 : 2947 —2949
[37] Hayes P G, Piers W E , Parvez M. Organometallics , 2005 , 24 :1173 —1183
[38] Hayes P G, Piers W E , Parvez M. J . Am. Chem. Soc. , 2003 ,125 : 5622 —5623
[39] Hayes P G, Piers W E , Parvez M. Chem. Eur. J . , 2007 , 13 :2632 —2640
[40] Hayes P G, Piers W E , McDonald R. J . Am. Chem. Soc. ,2002 , 124 : 2132 —2133
[41] Hayes P G, Welch G C , Emslie D J H , Noack C L , Piers W E ,Parvez M. Organometallics , 2003 , 22 : 1577 —1579
[42] Zhang L X, Suzuki T , Luo Y, Nishiura M, Hou Z M. Angew.Chem. Int . Ed. , 2007 , 46 : 1909 —1913
[43] Li S , Miao W, Tang T , Dong , W, Zhang X, Cui D.Organometallics , 2008 , 27 : 718 —725
[44] Yang Y, Liu B , Lv K, Gao W, Cui D , Chen X, Jing X.Organometallics , 2007 , 26 : 4575 —4584
[45] Elvidge B R , Arndt S , Zeimentz P M, Spaniol T P , Okuda J .Inorg. Chem. , 2005 , 44 : 6777 —6788
[46] Arndt S , Beckerle K, Zeimentz P M, Spaniol T P , Okuda J .Angew. Chem. Int . Ed. , 2005 , 44 : 7473 —7477
[47] Arndt S , Spaniol T P , Okuda J . Angew. Chem. Int . Ed. , 2003 ,42 : 5075 —5079
[48] Arndt S , Spaniol T P , Okuda J . Chem. Commun. , 2002 ,896 —897

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[4] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[7] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[10] 杨国栋, 苑高千, 张竞哲, 吴金波, 李发亮, 张海军. 多孔电磁波吸收材料[J]. 化学进展, 2023, 35(3): 445-457.
[11] 蒋昊洋, 熊丰, 覃木林, 高嵩, 何刘如懿, 邹如强. 用于电热转化、存储与利用的导电相变材料[J]. 化学进展, 2023, 35(3): 360-374.
[12] 刘晓珺, 秦朗, 俞燕蕾. 胆甾相液晶螺旋方向的光调控[J]. 化学进展, 2023, 35(2): 247-262.
[13] 李璇, 黄炯鹏, 张一帆, 石磊. 二维材料的一维纳米带[J]. 化学进展, 2023, 35(1): 88-104.
[14] 姬超, 李拓, 邹晓峰, 张璐, 梁春军. 二维钙钛矿光伏器件[J]. 化学进展, 2022, 34(9): 2063-2080.
[15] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
阅读次数
全文


摘要

阳离子型稀土金属有机化合物*