English
新闻公告
More
化学进展 2008, Vol. 20 Issue (05): 778-788 前一篇   

• 综述与评论 •

高温固体氧化物电解制氢技术*

张文强 于波** 陈靖 徐景明   

  1. (清华大学核能与新能源技术研究院 北京 102201)
  • 收稿日期:2007-06-25 修回日期:2007-08-05 出版日期:2008-05-24 发布日期:2008-05-24
  • 通讯作者: 于波

Hydrogen Production through Solid Oxide Electrolysis at Elevated temperatures

Zhang Wenqiang; Yu Bo**; Chen Jing; Xu Jingming   

  1. (Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 102201, China)
  • Received:2007-06-25 Revised:2007-08-05 Online:2008-05-24 Published:2008-05-24
  • Contact: Yu Bo
高温水蒸气电解制氢是解决大规模氢源问题的潜在途径之一。高温固体氧化物电解池(SOEC)可以利用各种可再生能源以及先进核能提供的热能和电能,在高温下将水蒸气高效电解为氢气和氧气。SOEC结合先进核能可以实现高达50%的热氢转化效率,已经成为近年来能源领域的一个研究热点。本文较详细介绍了SOEC的原理、分类、组成材料和特点,综述了SOEC制氢的发展现状、关键材料和核心技术,展望了SOEC在先进能源技术领域的应用前景。
High temperature steam electrolysis (HTSE) has received increasingly interest in recent years, which provides a potential way for the large-scale production of hydrogen. A solid oxide electrolysis cell (SOEC) can split H2O into H2 and O2 at high efficiency. The high-temperature heat and the electrical power can be supplied simutaneously by renewable energy sources or advanced nuclear energy. The conversion efficiency of thermal energy to hydrogen in HTSE is as high as 50%. The mechanism, classification, composition and structure of SOEC are summarized. Current situation, key materials and core technologies of SOEC in HTSE are reviewed and the foreground of its future application in advanced energy fields is proposed.

中图分类号: 

()

[ 1 ] Barreto L , Makihira A , Riahi K. Int . J . Hydrogen Energ. ,2003 , 28 : 267 —284
[ 2 ] Virkar A V , Tao G. Third International Workshop on Fuel Cells ———WICaC , 2006
[ 3 ] Joel M F , Pham A Q , Aceves S M, Int . J . Hydrogen Energ. ,2003 , 28 : 483 —490
[ 4 ] Idaho National Laboratory. http://www.inl.gov/featurestories/2007-03-22
[ 5 ] 衣宝廉(Yi B L) . 燃料电池———原理·技术·应用(Fuel Cell :Principle , Technology and Application) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2004
[ 6 ] Badwal S P S , Foger K. Ceram. Int . , 1996 , 22 : 257 —265
[ 7 ] Ni M, Leung M K H , Leung D Y C. J . Power Sources , 2006 ,163 : 460 —466
[ 8 ] Carter J D , Myers D , Kumar R. The 30th International Conference & Exposition on Advanced Ceramics and Composites ,Cocoa Beach Florida. 2006
[ 9 ] Yildiz B , Kazimi M S. Int . J . Hydrogen Energ. , 2006 , 31 :77 —92
[10] Shin Y, Park W, Chang J , et al . Int . J . Hydrogen Energ. ,2007 , 32 : 1486 —1491
[11] Dêenitz W, Schmidberger R. Int . J . Hydrogen Energ. , 1982 , 7 :321 —330
[12] Dêenitz W, Dietrich G, Erdle E , et al , Int . J . Hydrogen Energ. , 1988 , 13 : 283 —287
[13] 韩敏芳(Han M F) , 彭苏萍( Peng S P) . 固体氧化物燃料电池材料及制备( Solid Oxide Fuel Cell : Materials and Preparation) . 北京: 科学出版社(Beijing : Science Press) ,2004
[14] Nguyen Q M, Takahashi T. Science and Technology of Ceramic Fuel Cells. New York : Elsevier , 1995
[15] Hsiao Y C. Characterization of Porous SOFC Electrodes. Doctorial Dissertation , Illinois Institute of Technology , 1996
[16] Setoguchi T , Okamoto K, Eguchi K, et al . J . Electrochem.Soc. , 1992 , 10 : 2875 —2880
[17] Accorsi R , Bergann E. J . Electrochem. Soc. , 1980 , 12 : 804 —811
[18] Hauch A , Jensen S H , Mogensen M. Proceedings of the 26th Ris? International Symposium on Materials Science : Solid State Electrochemistry , Denmark , 2005. 203 —208
[19] Jensen S H , Hauch A , Mogensen M. Ris? International Symposium on Materials Science : Solid State Electrochemistry ,Denmark , 2005. 247 —252
[20] H? gh J . Influence of Impurities on the H2/H2O/Ni/YSZ Electrode.Doctorial Dissertation , Technical University of Denmark ,Denmark , 2005
[21] Osada N , Uchida H , Watanabe M. J . Electrochem. Soc. , 2006 ,153 : A816 —A820
[22] Uchida H , Osada N , Watanabe M. Electrochem. Solid-State Lett . , 2004 , 7(12) : A500 —A502
[23] Skinner S J . Int . J . Inorg. Mater. , 2001 , 3 (2) : 113 —121
[24] Shao Z P , Haile S M. Nature , 2004 , 431 : 170 —173
[25] Wang W S , Huang Y Y, Jung S , et al . J . Electrochem. Soc. ,2006 , 153 : A2066 —A2070
[26] Yamamoto O , Arati Y, Takeda Y, et al . Solid State Ionics ,1995 , 79 : 137 —142
[27] Mizutani Y, Tamura M, Kawai M, et al . Solid State Ionics ,1994 , 72 : 271 —275
[28] Haile S M. Acta Mater. , 2003 , 51 : 5981 —6000
[29] Will J , Mitterdorfer A , Kleinlogel C , et al . Solid State Ionics ,2000 , 131 : 79 —96
[30] Zhu B , Ingvar A , Camilla A , et al . Electrochem. Commun. ,2006 , 8 : 495 —498
[31] Demin A , Gorbova E , Tsiakaras P. J . Power Sources , 2007 , 171(1) : 205 —211
[32] Zhu W Z , Deevi S C. Mater. Sci . Eng. A , 2003 , 348 : 227 —243
[33] 朱庆山(Zhu Q S) , 彭练(Peng L) , 黄文来(Huang WL) 等.无机材料学报(Journal of Inorganic Materials) , 2006 , 21 (2) :284 —290
[34] Lessing P A. J . Mater. Sci . , 2007 , 42 : 3465 —3476
[35] O’Brien J E , Stoots C M, Herring J S , et al , J . Fuel Cell Sci .Technol . , 2005 , 2 : 156 —163
[36] Herring J S , O’Briena J E , Stoots C M, et al . Int . J . Hydrogen Energ. , 2007 , 32 : 440 —450
[37] O’Briena J E , Stoots C M, Herring J S , et al . J . Fuel Cell Sci .Technol . , 2006 , 3 : 213 —219
[38] Dutta S , Morehouse J H , Khan J A. Int . J . Hydrogen Energy ,1997 , 22 : 883 —895
[39] Nernst W. Z. Elecktrochem. , 1899 , 6 : 41
[40] Spacil H S , Tedmon C S Jr. J . Electrochem. Soc. , 1969 , 116 :1618 —1626
[41] Spacil H S , Tedmon C S Jr. J . Electrochem. Soc. , 1969 , 116 :1627 —1633
[42] Doenitz W, Eedle E. Int . J . Hydrogen Energ. , 1985 , 10 :291 —295
[43] Maskalick N J . Int . J . Hydrogen Energ. , 1986 , 11 : 563 —570
[44] Hino R , Haga K, Aita H , et al . Nucl . Eng. Des. , 2004 , 233 :363 —375
[45] Herring J S , Lessing P , O’Brien J E , et al . Second Information Exchange Meeting on Nuclear Production of Hydrogen , 2003
[46] Hi2H2 project . http://www.hi2h2.com 2007-06-58
[47] Jensen S H , Mogensen M. 19th World Energy Congress , 2004
[48] Hauch A , Jensen S H , Ramousse S , et al . J . Electrochem.Soc. , 2006 , 153 (9) : A1741 —A1747
[49] Mansilla C , Sigurvinsson J , Bontemps A , et al . Energy , 2007 ,32 : 423 —430
[50] A Technology Roadmap for Generation ⅣNuclear Energy System.U S DOE Nuclear Energy Research Advisory Committee and the Generation Ⅳ International Forum, 2002
[51] Forsberg C. Int . J . Hydrogen Energ. , 2003 , 28 : 1073 —1081
[52] Utgikar V , Thiesen T. Int . J . Hydrogen Energ. , 2006 , 31 :939 —944
[53] Sigurvinsson J , Mansilla C , Lovera P , et al . Int . Hydrogen Energ. , 2007 , 32 : 1174 —1182
[54] Jensen S H , Larsen P H , Mogensen M. Int . J . Hydrogen Energ. ,2007 , 32 : 3253 —3257
[55] Sigurvinsson J , Mansilla C , Lovera P , et al . Int . J . Hydrogen Energ. , 2007 , 32 : 1174 —1182
[56] Sridhar K R , Vaniman B T. Solid State Ionics , 1997 , 93 : 321 —328

[1] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[2] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[3] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[4] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[5] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[6] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[7] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[8] 赵晨欢, 张文强, 于波*, 王建晨, 陈靖. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288.
[9] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.
[10] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
[11] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
[12] 翟康, 李孔斋, 祝星, 魏永刚. 两步热化学分解水制氢用氧交换材料[J]. 化学进展, 2015, 27(10): 1481-1499.
[13] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[14] 曹天宇, 史翊翔, 蔡宁生. 固体氧化物电解池NOx电化学还原技术[J]. 化学进展, 2013, 25(10): 1648-1655.
[15] 王振, 于波*, 张文强, 陈靖, 徐景明. 高温共电解H2O/CO2制备清洁燃料[J]. 化学进展, 2013, 25(07): 1229-1236.
阅读次数
全文


摘要

高温固体氧化物电解制氢技术*