English
新闻公告
More
化学进展 2008, Vol. 20 Issue (04): 620-624 前一篇   

• 综述与评论 •

EMMS模型中噎塞判据的进一步分析*

程长建1,2 葛蔚1**   

  1. (1. 中国科学院过程工程研究所 多相反应重点实验室 北京 100080;
    2. 中国科学院研究生院 北京 100049)
  • 收稿日期:2007-04-26 修回日期:2007-06-05 出版日期:2008-04-24 发布日期:2008-04-24
  • 通讯作者: 葛蔚

Further Analysis on the Choking Criteria in the EMMS Model

Cheng Changjian1,2 Ge Wei1**   

  1. (1. State Key Laboratory of Multi-phase ComplexSystems, Institute of Processing engineering, Chinese Academy of Science, Beijing 100080, China; 2. Graduate School of the Chinese Academy of Science, Beijing 100049, China)

  • Received:2007-04-26 Revised:2007-06-05 Online:2008-04-24 Published:2008-04-24
  • Contact: Ge Wei

噎塞是气固流态化系统中典型的结构突变现象。能量最小多尺度(energy minimization multi-Scale, EMMS)模型能够从机理上分析此现象。本文讨论了EMMS模型中现有的两种噎塞判据之间的联系与区别,结果表明在相同气体速度下二者得到的饱和夹带量近似相等;进一步分析表明它们所反映的物理机理具有一致性,都确定了快速流态化和稀相输送间流域过渡的临界条件。

Choking is a typical critical phenomenon in gas-solid fluidization featuring abrupt structural changes. The Energy Minimization Multi-Scale (EMMS) model is capable of analyzing the mechanism of this phenomenon. In this paper, two criteria for choking previously proposed on the basis of the EMMS model are discussed with the emphasis on the difference and consistency between them. Simulation result shows that the saturation carrying capacities calculated with the two criteria are approximately equivalent at given gas velocities. It is demonstrated further that the mechanism reflected by these two criteria is consistent. Both criteria have defined the critical condition for the regime transition between fast fluidization and dilute transport.

中图分类号: 

()

[ 1 ] Bi H T, Grace J R , Zhu J X. Int . J . Multiphase Flow , 1993 , 19 : 1077 —1092
[ 2 ] Xu G W, Nomura , K, Gao S Q , Kato K. AIChEJournal , 2001 , 47 : 2177 —2196
[ 3 ] Li J H , Kwauk M, Reh L. Fluidization Ⅶ. Engineering Foundation (eds. Potter O E , Nicklin D J ) . New York : 1992. 83 —91
[ 4 ] Li J H , Kwauk M. Particle-Fluid Two-Phase Flow: the Energy-Minimization Multi-Scale Methods. Beijing : Metallurgical Industry Press. 1994
[ 5 ] Li J H , Qian G H , Wen L X. Chemical Engineering Science , 1996 , 51 : 667 —669
[ 6 ] Li J H , Wen L X, Ge W, Cui H P , Ren J Q. Chemical Engineering Science , 1998 , 53 : 3367 —3379
[ 7 ] 李静海(Li J H) . 中国科学院化工冶金研究所博士学位论文( Doctoral Dissertation of Institute of Chemical Metallurgy , Academia Sinica) , 1987
[ 8 ] Li J H , Cheng C L , Zhang Z D , et al . Chemical Engineering Science , 1999 , 54 : 5409 —5425
[ 9 ] Li J H , Kwauk M. Chemical Engineering Science , 2003 , 58 : 521 —535
[10] Li J H , Tung Y J , Kwauk M. Circulating Fluidized Bed Technology II. ( eds. Basu P , Large J F) , Oxford : Pergamon Press , 1988. 193 —203
[11] Weinstein H , Graff R A , Meller M, Shao M J . Fluidization D (eds. Kunii , Toei R) . New York : Engineering Foundation , 1984. 299 —306
[12] Grace J R , Tuot J . Trans. Inst . Chem. Engns. , 1979 , 57 : 49 — 54
[13] Matsen J M. Powder Technology , 1982 , 32 : 21 —33
[14] Yerushalmi J , Cankurt N J . Powder Technology , 1979 , 24 : 187 —192
[15] Yang W Q. Powder Technology , 1983 , 35 : 143 —148
[16] Xu G W, Li J H. Chemical Engineering Science , 1998 , 53 : 1349 —1366
[17] Ge W, Li J H. Chemical Engineering Science , 2002 , 57 : 3993 — 4004
[18] Bai D R , Kato K. Powder Technology , 1999 , 101 : 183 —190

[1] 吉琳*, 闫欣平. 介观生化反应的随机和混合模拟算法[J]. 化学进展, 2013, 25(06): 893-899.
[2] 刘娟, 杨青林*, 徐晶晶, 刘克松*, 郭林, 江雷. 仿壁虎和贻贝黏附材料[J]. 化学进展, 2012, (10): 1946-1954.
[3] 陈丕恒, 赖新春, 汪小琳. 钚及其化合物的理论研究[J]. 化学进展, 2011, 23(7): 1316-1321.
[4] 柯清平 李广录 郝天歌 何涛 李雪梅. 超疏水模型及其机理*[J]. 化学进展, 2010, 22(0203): 284-290.
[5] 柴立和. 多尺度科学的研究进展*[J]. 化学进展, 2005, 17(02): 186-191.
[6] 张闻,张文娟,孙文华. 多尺度科学的研究进展*[J]. 化学进展, 2005, 17(02): 0-.
[7] 方能虎,蔺丽,任吉存,吴旦. 多尺度科学的研究进展*[J]. 化学进展, 2005, 17(02): 0-.
[8] 熊中强,米镇涛,张香文,邢恩会. 多尺度科学的研究进展*[J]. 化学进展, 2005, 17(02): 0-.
[9] 李静海,葛蔚,郭友良. 颗粒流体系统的非线性行为[J]. 化学进展, 1995, 7(03): 231-.