English
新闻公告
More
化学进展 2008, Vol. 20 Issue (0203): 208-211 前一篇   后一篇

• 综述与评论 •

化学反应中的几何相效应

于昂扬   

  1. (辽宁石油化工大学理学院 抚顺 113001)
  • 收稿日期:2007-03-01 修回日期:2007-03-15 出版日期:2008-03-24 发布日期:2008-03-24
  • 通讯作者: 于昂扬

Some developments of Geometric Phase Effects in Chemical Reactions

Yu Angyang   

  1. (School of Science, Liaoning University of Petroleum & Chemical Technology, Fushun 113001, China)
  • Received:2007-03-01 Revised:2007-03-15 Online:2008-03-24 Published:2008-03-24
  • Contact: Yu Angyang
锥形交叉可以通过几何相效应影响核动力学。在过去的一些年里关于锥形交叉的理论有大量的发展和进步,本文综述了分子反应动力学领域针对几何相效应研究的一些理论成果。介绍了分子反应动力学中与几何相效应直接相关的一些最新成果,同时也对这些重要结果进行了解释。我们相信几何相效应将会在非绝热化学中发挥最重要的作用。

Despite the central position of Born-Oppenheimer approximation in chemical theory, its breakdowns, electronically nonadiabatic processes are ubiquitous. On the ground state potential energy surface, a conical intersection produces the geometric phase effect. A conical intersection could influence the nuclear dynamics through the geometric phase effect. The origin of the geometric phase effect and some theoretical approaches including the geometric phase effect are reviewed. Some recent results concerned with the geometric phase effect in the reaction dynamics are demonstrated and there are explanation for these intriguing results. There are also some predictions for the future of the geometric phase effects in reaction dynamics. It is pointed that the geometric phase effect will play the most important role in nonadiabatic chemistry.

中图分类号: 

()

[ 1 ] Chu T S , Zhang Y, Han K L. Int . Rev. Phys. Chem. , 2006 ,25 : 201 —235
[ 2 ] Baer M, Ng C Y. State-Selected and State-to-State Ion-Molecule Reaction Dynamics. NY: Wiley , 1991. 1 —71
[ 3 ] Chu T S , Xie T X, Han K L. J . Chem. Phys. , 2004 , 121 :9352 —9355
[ 4 ] Michl J , Bonacic-Koutecky V. Electronic Aspects of Organic Photochemistry. NY: Wiley , 1990. 1 —101
[ 5 ] Hu X, Schulten K. Phys. Today , 1997 , 50 : 28 —34
[ 6 ] Ben-Nun M, Molnar F , Schulten K, et al . Proc. Nat . Acad.Sci . USA , 2002 , 99 : 1769 —1773
[ 7 ] Von Neumann J , Wigner E. Phys. Z. , 1929 , 30 : 467 —470
[ 8 ] Jahn H A , Teller E. Proc. R. Soc. Lond. Ser. A , 1937 , 161 :220 —229
[ 9 ] Born M, Huang K. Dynamical Theory of Crystal Lattices. Oxford :Oxford University Press , 1954. 1 —101
[10] Herzberg G, Longuet-Higgins H C. Discuss Faraday Soc. , 1963 ,35 : 77 —81
[11] Longuet-Higgins H C. Adv. Spectrosc. , 1961 , 2 : 429 —433
[12] Berry M V. Proc. R. Soc. Lond. Ser. A , 1984 , 392 : 45 —57
[13] Mead C A ,Truhlar D G. J . Chem. Phys. , 1979 , 70 : 2284 —2296
[14] Aharonov Y, Bohm B. Phys. Rev. , 1959 , 115 : 485 —489
[15] Lepetit B , Kuppermann A. Chem. Phys. Lett . , 1990 , 166 :581 —585
[16] Kendrick B K. J . Phys. Chem. A , 2003 , 107 : 6739 —6756
[17] Yarkony D R. Rev. Mod. Phys. , 1996 , 68 : 985 —1013
[18] Yarkony D R. J . Phys. Chem. A , 1997 , 101 : 4263 —4270
[19] Mead C A. J . Chem. Phys. , 1983 , 78 : 807 —814
[20] Yarkony D R. Theor. Chem. Acc. , 1997 , 98 : 197 —201
[21] Kuppermann A ,Wu YS. Chem. Phys. Lett . , 1993 , 205 : 577 —587
[22] Kliner D A V , Adelman D E , Zare R NJ . Chem. Phys. , 1991 ,95 : 1648 —1662
[23] Kuppermann A , Wu Y S. Chem. Phys. Lett . , 1995 , 241 :229 —240
[24] Zare R N , Althorpe S C , Fernandez-Alonso F , et al . Nature ,2002 , 416 (6876) : 67 —70
[25] Schnieder L , Seekamprahn K, Borkowski J , et al . Science ,1995 , 269 : 207 —210
[26] Zare R N. Angew. Chem. Int . Ed. Engl . , 1995 , 39 : 2748 —2752
[27] Kendrick B K. J . Chem. Phys. , 2000 , 112 : 5679 —5704
[28] Juanes-Marcos J C , Althorpe S C. J . Chem. Phys. , 2005 , 122 :art . no. 204324
[29] Schatz G C. J . Phys. Chem. , 1996 , 100 : 12839 —12847
[30] Lu R F , Chu T S , Zhang Y, Han K L ,Varandas A J C. J .Chem. Phys. , 2006 , 125 : art . no. 133108
[31] Butler L J . Annu. Rev. Phys. Chem. , 1998 , 49 : 125 —171
[32] Applegate B E , Barckholtz T A , Miller T A. Chem. Soc. Rev. ,2003 , 32 : 38 —49
[33] Althorpe S C. J . Chem. Phys. , 2006 , 124 : art . no. 084105
[34] Klossika J J , Schinke R J . Chem. Phys. , 1999 , 111 : 5882 —5896
[35] Yarkony D R. J . Phys. Chem. A , 2001 , 105 : 6277 —6293
[36] Chu T S , Han KL. J . Phys. Chem. A , 2005 , 109 : 2050 —2053
[37] Babikov D , Kendrick B K, Zhang P. J . Chem. Phys. , 2005 ,122 (4) : art . no. 044315
[38] Babikov D , Zhang P , Morokuma K. J . Chem. Phys. , 2004 ,121 : 6743 —6749

[1] 徐昌藩, 房鑫, 湛菁, 陈佳希, 梁风. 金属-二氧化碳电池的发展:机理及关键材料[J]. 化学进展, 2020, 32(6): 836-850.
[2] 吉琳*, 闫欣平. 介观生化反应的随机和混合模拟算法[J]. 化学进展, 2013, 25(06): 893-899.
[3] 张春芳, 马海涛, 边文生*. 化学反应的高精度从头算势能面[J]. 化学进展, 2012, 24(06): 1082-1093.
[4] 孙志刚*, 张东辉*. 基于量子波包方法的态-态分辨反应散射动力学计算[J]. 化学进展, 2012, 24(06): 1153-1165.
[5] 马广璐, 庄大为, 戴洪斌, 王平. 铝/水反应可控制氢[J]. 化学进展, 2012, 24(04): 650-658.
[6] 李云涛,钟秦. 低温NH3-SCR反应机理及动力学研究进展*[J]. 化学进展, 2009, 21(6): 1094-1100.
[7] 帅志刚. 理论化学研究进展以及在可持续发展中的应用*[J]. 化学进展, 2009, 21(11): 2259-2270.
[8] 梁艳 王平 戴洪斌. 硼氢化钠催化水解制氢*[J]. 化学进展, 2009, 21(10): 2219-2228.
[9] 戴东旭,杨学明. 基元化学反应态态动力学研究*[J]. 化学进展, 2007, 19(11): 1633-1645.
[10] 胡英,刘洪来. 分子工程和化学工程[J]. 化学进展, 1995, 7(03): 235-.
[11] 何国钟. 分子反应动力学如何走向21世纪[J]. 化学进展, 1994, 6(04): 257-.
阅读次数
全文


摘要

化学反应中的几何相效应