English
新闻公告
More
化学进展 2008, Vol. 20 Issue (0203): 197-207 前一篇   后一篇

• 特约稿 •

DNA纳米机器

杨洋; 柳华杰;刘冬生*

  

  1. (国家纳米科学中心 北京 100080)
  • 收稿日期:2007-08-28 修回日期:2007-10-09 出版日期:2008-03-24 发布日期:2008-03-24
  • 通讯作者: 刘冬生

DNA Based Nanomachines

Yang Yang; Liu Huajie; Liu Dongsheng*   

  1. (National Center of NanoScience and Technology, Beijing 100080, China)
  • Received:2007-08-28 Revised:2007-10-09 Online:2008-03-24 Published:2008-03-24
  • Contact: Liu Dongsheng

本文介绍了以DNA为基础的纳米机器的发展现状,强调了核酸作为一种材料在纳米科技领域的重要作用。着重阐述了利用链交换反应或环境因素变化可以驱动DNA二级结构的变化,从而可以构建出形式多样的纳米级核酸分子机器;评价了这类分子机器在效率、寿命和副产物方面的优缺点。在总结前人工作的基础上预测了核酸纳米技术在生命科、材料科学以及计算科学等诸多方面可能的应用。

Other than its biology significance, DNA also plays an important role in materials science and nanotechnology. It has been well established that DNA could serve as an ideal material for “bottom-up” construction of nano-scale patterns. In this review, recent development of DNA based nanomachines which relies on the responsible secondary structure changes has been summarized and cataloged according to different driven mechanisms. The advantages and shortcomings of each driven mechanism have also been compared. In addition, this review has summarized much efforts in demonstrating working ability of DNA nanomachine, which is critical for the development. Recent progress in using DNA nanomachine to fabricate nanodevices and smart surfaces has also been addressed to illustrate its potential application in materials science and diagnostics in the future.

中图分类号: 

()

[1]  Seeman N C.Angew.Chem.Int.Ed.,1998,37:3220-3238
[2]  Seeman N C.Chem.Bio.,2003,10:115l一1159
[3]  Goodman R P,Berry R M,Turberfield A J.Chem.Commun.,2004.1372— 1373
[4]  Chen J H,Seeman N C.Nature,1991,350:631—633
[5]  Shih W M,Quispe J D,Joyee G F.Nature,2004,427:6l8—62l
[6]  Zhang Y W,Seeman N C.J.Am.Chem.Soc.,1994,l16:l66l—l669
[7]  Rothemund P W .Nature,2006,440:297— 302
[8]  钱璐璐(Qian L L),刘强(Liu Q),樊春海(Fan C H)等.科学通报(Chin.Sci.Bul1.),2006,51(24):2860-2863
[9]  Braun E, Eichen Y, Sivan U, Ben-Yoseph G. Nature, 1998,39l:775—778
[1O] Deng Z,Mao C.Angew.Chem.Int.Ed.Eng..,2004,43:4068-4070
[11] Park S H,Yan H,Reif J H,la Bean T H,Finkelstein G.Nanotechnology,2004,15:S525一S527
[12] Simmel F C,Dittmer W U.Small,2005,l:284— 299
[13] Seeman N C.Trends.Biochem.Sci.,2005,30:ll9— 125
[14] Beissenhirtz M K, W.1lner 1.Org. Biomo1.Chem.,2006,4:3392- 3401
[15] Liedl T,Sobey T L,Simmel F C.Nano Today,2007,2:36— 4l
[16] Yurke B,Turbedield A J,Mills A P Jr,Simmel F C,Neumann J L.Nature,2000,406:605—608
[17] Simmel F C,Yurke B.PII cal Review E,2001,63(4):art.no.04l9l3
[18] Mitchell J C, Yurke B. DNA Computing-7th International Workshop on DNA-Based Computers,DNA 7,2002(2340),258—268
[19] Yan H, Zhang X P, Shen Z Y, Seeman N C.Nature,2002,415:62—65
[20] Davis J T.Angew.Chem.Int.Ed.En .,2004,43:668- 698
[21] Davis J T,Spada G P.Chem.Soc.Rev.,2O07,36:296- 313
[22] Mills M, Lacroix L,Arimondo P B,Leroy J L,Francois J C,Klump H,Mergny J L.Curr.Med.Chem.Anti-Cancer Agents,2002,2:627—644
[23] Gehring K,Leroy J L,GuemnM.Nature,1993,363:56l一565
[24] Patel D J.Nature,l993,363:499一500
[25] Li J W J,Tan W H.Nano Letters,2002,2:3l5— 3l8
[26] Alberti P, Mergny J L.Proceedings of the National Academy 0f Sciences of the United States of America,2003,l00:1569一1573
[27] Mao C D,Sun W Q,Shen Z Y,Seeman N C.Nature,1999,397:l44一l46
[28] Stryer L,Haugland R P.Proc. Natl.Acad.Sci.USA, 1967,58:719一726
[29] Niemeyer C M ,Adler M ,Lenhert S, Gao S,Fuchs H,Chi L.ChemBioChem ,200l,2:260一264
[30] Viasnoff V,Meller A,Isambert H.Nano Lett.,2006,6:101—104
[31] Liu D S,Balasubramanian S.Angew.Chem.Int.Ed.Eng1.,2003,42:5734— 5736
[32] Liu H J,Xu Y,Li F Y,Yang Y,Wang W X,Song Y L,Liu D S.Angew.Chem.Int.Ed.Engl.,2007,46:25l5—25l7
[33] Liu D S,Bruckbauer A,Abell C,Balasubramanian S,Kang D J,Klenerman D, Zhou D.J.Am.Chem. Soc.,2006, 128:2067—2O7l
[34] Shu W M,Liu D S,Watari M,Riener C K,Strunz T,Welland M E,Balasubramanian S, McKendry R A.J.Am .Chem .Soc.,2005.127:17054—17060
[35] Mao Y D,Liu D S,Wang S T,Luo S N,Wang W X,Yang Y L,Ouyang Q,Jiang L.Nucleic Acids Res.,2007,35(5):art.no.e33
[36] Wang S,Liu H,Liu D,Ma X,Fang X,Jiang L.Angew.Chem.Int.Ed.Engi.,2007,46:39l5— 39l7
[37] Dittmer W U,Reuter A,Simmel F C.Angew.Chem.1nt.Ed.Engl.,2004,43:3550--3553
[38] Xiao Y,Parlor V,Niazov T,Dishon A,Kotler M,Willner I.J.Am .Chem .Soc.,2004,126:7430.一7431
[39] Chen Y,Wang M,Mao C D.Angew.Chem.1nt.Ed.Eng1.,2004.43:3554- 3557
[40] Yin P,Yan H,Daniell X G,Turberfield A J, Reif J H.Angew.Chem .Int.Ed.Engl.,2004,43:49O6-49l1
[4l] Shin J S,Pierce N A.J.Am.Chem.Soc.,2004, 126:l0834— 10835
[42] Tian Y,Mao C D.J.Am.Chem.Soc.,2004,126:1l4l0-1l41l
[43] Venkataraman S,Dirks R M,Rothemund P W K,Winfree E, Pierce N A.Nature Nanotechnology,2007,2:490- 494

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[8] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[9] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[10] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[13] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[14] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[15] 林子涵, 陈煌, 董嘉伟, 赵道辉, 李理波. 纳米孔生物分子检测研究[J]. 化学进展, 2020, 32(5): 562-580.
阅读次数
全文


摘要

DNA纳米机器