English
新闻公告
More
化学进展 2008, Vol. 20 Issue (01): 54-59 前一篇   后一篇

• 综述与评论 •

生物矿化中的无定形碳酸钙*

徐旭荣; 蔡安华; 刘睿; 潘海华; 唐睿康**   

  1. (浙江大学化学系 浙江大学生物物质与信息调控中心 杭州 310027)
  • 收稿日期:2007-02-01 修回日期:2007-03-12 出版日期:2008-01-24 发布日期:2008-01-24
  • 通讯作者: 徐旭荣;唐睿康

Amorphous Calcium Carbonate in Biomineralization

Xu Xurong; Cai Anhua; Liu Rui; Pan Haihua; Tang Ruikang**   

  1. (Department of Chemisrty, Center of biomaterials and biopathway, Zhejiang University, Hangzhou, 310027, China)
  • Received:2007-02-01 Revised:2007-03-12 Online:2008-01-24 Published:2008-01-24
  • Contact: Xu Xurong;Tang Ruikang
本文综述了无定形碳酸钙的结构,合成和表征方法,阐明了无定形碳酸钙是一种热力学上的不稳定相,具有功能基团的有机高分子,功能蛋白质以及无机镁离子等添加剂对它有一定的稳定作用,抑制它的转化;但是在一定条件下它将转化成结晶态的碳酸钙。无定形碳酸钙具有高可溶性,各相同性和可塑性,正是这些特性使得生物采用它作为生物矿物的前体来矿化,形成具有精美结构的各种生物矿物。通过对无定形碳酸钙的研究,能够更加深入地了解生物矿化的机理,更好地仿生合成和制备各种功能材料。
The structure, synthesis and characterization of amorphous calcium carbonate and the important precursor of biomineralization are introduced. The amorphous phase is thermodynamically metastable. However, its stability and transformation into the crystallized calcium carbonates can be regulated by additives, e.g. functional polymer, protein, and inorganic ions etc. Since the amorphous calcium carbonate has the relatively high solubility and isotropy, its involvements in biomineralization can uniquely lead into the desired structure of crystallized calcium carbonate, which is another important feature of the biominerals in nature. The studies of amorphous calcium carbonate can improve our understanding of the mechanisms of biomineralization and they can also provide another improved strategy for the biomimetic preparations of functional materials.

中图分类号: 

()

[ 1 ] Addadi L , Raz S , Weiner S. Adv. Mater. , 2003 , 15 : 959 —970
[ 2 ] Nassif N , Pinna N , Gehrke N , Antonietti M, J? ger C , Cê lfen H.Proc. Natl . Acad. Sci . USA , 2005 , 102 : 12653 —12655
[ 3 ] Addadi L , Joester D , Nudelman F , Weiner S. Chem. Eur. J . ,2006 , 12 : 980 —987
[ 4 ] Mann S. Biomineralization : Principles and Concepts in Bioinorganic Materials Chemistry. New York : Oxford University Press , 2001. 103 —106
[ 5 ] Mann S , Heywood B R , Rajam S , Birchall J D. Nature , 1988 ,334 : 692 —695
[ 6 ] Heywood B R , Mann S. Adv. Mater. , 1994 , 6 : 9 —20
[ 7 ] Aizenberg J , Black A J , Whitesides G M. Nature , 1998 , 394 :868 —871
[ 8 ] Aizenberg J , Black A J , Whitesides GM. J . Am. Chem. Soc. ,1999 , 121 : 4500 —4509
[ 9 ] Han Y J , Aizenberg J . Angew. Chem. Int . Ed. , 2003 , 42 :3668 —3670
[10] Küther J , Seshadri R , Knoll W, Tremel W. J . Mater. Chem. ,1998 , 8 : 641 —650
[11] Lee I , Han S W, Lee S J , Choi H J , Kim K. Adv. Mater. ,2002 , 14 : 1640 —1643
[12] Cê lfen H , Qi L M. Chem. Eur. J . , 2001 , 7 : 106 —116
[13] Yu S H , Cê lfen H , Hartmann J , Antonietti M. Adv. Funct .Mater. , 2002 , 12 : 541 —545
[14] Qi L M, Li J , Ma J M. Adv. Mater. , 2002 , 14 : 300 —303
[15] Chen S F , Yu S H , Wang T X, Jiang J , Cê lfen H , Hu B , Yu B.Adv. Mater. , 2005 , 17 : 1461 —1465
[16] Kato T , Sugawara A , Hosoda N. Adv. Mater. , 2002 , 14 : 869 —877
[17] Koga N , Nakagoe Y, Tanaka H. Thermochim. Acta , 1998 , 318 :239 —244
[18] Faatz M, Grêhn F , Wegner G. Adv. Mater. , 2004 , 16 : 996 —1000
[19] Lee H S , Ha T H , Kim K. Mater. Chem. Phys. , 2005 , 93 :376 —380
[20] Günthera C , Beckerb A , Wolfa G, Eppleb M Z. Anorg. Allg.Chem. , 2005 , 631 : 2830 —2835
[21] Ajikumar P K, Wong L G, Subramanyam G, Lakshminarayanan R , Valiyaveettil S. Cryst . Growth & Design , 2005 , 5 : 1129 —1134
[22] Donners J J J M, Heywood B R , Meijer EW, Nolte RJ M, Sommerdijk N A J M. Chem. Eur. J . , 2002 , 8 : 2561 —2567
[23] Xu A W, Yu Q , Dong W F , Antonetti M, Cê lfen H. Adv.Mater. , 2005 , 17 : 2217 —2221
[24] Hasse B , Ehrenberg H , Marxen J , Becker W, Epple M. Chem.Eur. J . , 2000 , 6 : 3679 —3685
[25] Becker A , Bismayer U , Epple M, Fabritius H , Hasse B , Shi J M, Ziegler A. Dalton Trans. , 2003 , 551 —555
[26] Breˇcevic′L J , Nielsen A E. J . Cryst . Growth , 1989 , 98 : 504 —510
[27] Xu X R , Han J T , Kim D H , Cho K. J . Phys. Chem. B , 2006 ,110 : 2764 —2770
[28] Xu X R , Han J T , Cho K. Chem. Mater. , 2004 , 16 : 1740 —1746
[29] Gal J Y, Bollinger J C , Tolosa H , Gache N. Talanta , 1996 , 43 :1497 —1509
[30] Gower L B , Odom DJ . J . Cryst . Growth , 2000 , 210 : 719 —734
[31] Raz S , Hamilton P C , Wilt F H , Weiner S , Addadi L. Adv.Funct . Mater. , 2003 , 13 : 480 —486
[32] Aizenberg J , Muller D A , Grazul J L , Hamann D R. Science ,2003 , 299 : 1205 —1208
[33] Politi Y, Arad T , Klein E , Weiner S , Addadi L. Science , 2004 ,306 : 1161 —1164
[34] Li M, Mann S. Adv Funct . Mater. , 2002 , 12 : 773 —777
[35] Shen Q , Wei H , Zhou Y, Huang YP , Yang H R , Wang DJ , Xu D F. J . Phys. Chem. B , 2006 , 110 : 2994 —3000
[36] Xu X R , Han J T , Cho K. Langmuir , 2005 , 21 : 4801 —4804
[37] Han J T , Xu X R , Kim D H , Cho K. Adv. Funct . Mater. ,2005 , 15 : 475 —480
[38] Han J T , Xu X R , Kim D H , Cho K. Chem. Mater. , 2005 , 17 :136 —141
[39] Loste E , Meldrum F. Chem. Commun. , 2001 : 901 —902
[40] Park R J , Meldrum F C. Adv. Mater. , 2002 , 14 : 1167 —1169
[41] Hetherington N B J , Kulak A N , Sheard K, Meldrum F C.Langmuir , 2006 , 22 : 1955 —1958
[42] Tugulu S , Harms M, Fricke M, Volkmer D , Klok H. Angew.Chem. Int . Ed. , 2006 , 45 : 7458 —7461

[1] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[2] 王丽媛, 张朦, 王静, 袁玲, 任林, 高庆宇. 自振荡凝胶的仿生运动[J]. 化学进展, 2022, 34(4): 824-836.
[3] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[4] 许金凯, 蔡倩倩, 于占江, 廉中旭, 田纪文, 于化东. 金属基仿生超滑表面制造及其应用[J]. 化学进展, 2021, 33(6): 958-974.
[5] 王桂龙, 崔辛, 陈莹, 胡振峰, 梁秀兵, 陈甫雪. 基于贻贝启发的水下仿生胶黏剂[J]. 化学进展, 2021, 33(12): 2378-2391.
[6] 张维佳, 邵学广, 蔡文生. 抗冻蛋白抗冻机制的分子模拟研究[J]. 化学进展, 2021, 33(10): 1797-1811.
[7] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[8] 茅瓅波, 高怀岭, 孟玉峰, 杨玉露, 孟祥森, 俞书宏. 凝聚态化学视角下的生物矿化[J]. 化学进展, 2020, 32(8): 1086-1099.
[9] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[10] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[11] 张瑞璞, 张润泽, 罗三中. 仿生邻醌催化[J]. 化学进展, 2020, 32(11): 1753-1765.
[12] 肖瑶, 胡文娟, 任衍彪, 康旭, 刘健. 仿生光电催化固氮[J]. 化学进展, 2018, 30(4): 325-337.
[13] 周晨, 吴俊涛*. 仿生微纳米纤维黏附材料[J]. 化学进展, 2018, 30(12): 1863-1873.
[14] 吴媛媛, 潘海华, 唐睿康. 胶原矿化与仿生修复[J]. 化学进展, 2018, 30(10): 1503-1510.
[15] 谢晓晓, 马晓明*, 茹祥莉, 常毅, 郭玉明, 杨林*. 基于细胞仿生矿化合成纳米材料及其应用[J]. 化学进展, 2018, 30(10): 1511-1523.
阅读次数
全文


摘要

生物矿化中的无定形碳酸钙*