English
新闻公告
More
化学进展 2008, Vol. 20 Issue (01): 163-170 前一篇   后一篇

• 综述与评论 •

载体对包埋酶微环境的影响分析

许松伟1* 张杰1 杨占平1 曹建华1 马晓龙1 姜忠义2   

  1. (1. 江苏南通醋酸纤维有限公司技术中心 南通 226008;
    2. 天津大学化工学院 天津 300072)
  • 收稿日期:2007-02-06 修回日期:2007-05-21 出版日期:2008-01-24 发布日期:2008-01-24
  • 通讯作者: 许松伟

Analyzing the Effect of Carrier on the Microenvironment of Encapsulated Enzyme

Xu Songwei 1*; Zhang Jie1; Yang Zhanping1; Cao Jianhua 1; Ma Xiaolong1; Jiang Zhongyi2   

  1. (1. Technical Center, Nantong Cellulose Fibers Co., Ltd., Nantong, Jiangsu 226008, China;
    2. School of Chemical Engineering &Technology, Tianjin University, Tianjin 300072, China)
  • Received:2007-02-06 Revised:2007-05-21 Online:2008-01-24 Published:2008-01-24
  • Contact: Xu Songwei
包埋法固定化酶过程中,酶固定化载体的选择和设计是酶固定化过程的关键因素,适宜的载体微环境对酶活性和稳定性的影响尤为重要。论文首先分析并提出了影响固定化酶所处载体微环境的主要因素,包括载体的亲疏水性、结构形态和反应活性。载体的亲疏水性决定固定化酶微环境中的水分含量。载体的结构形态对酶形成的笼效应,以及载体的反应活性,包括共价键合、静电和氢键等的结合能力,影响酶构象的稳定性和运动性。另外,底物/产物的扩散速率和酶的可及性也同样受到载体的孔结构、孔分布以及载体反应活性的影响。本文介绍了常用的酶包埋载体,包括sol-gel二氧化硅、高分子水凝胶以及高分子-二氧化硅杂化凝胶固定化酶过程,结合上述影响酶微环境的因素,分析比较了三类载体固定化酶的包埋率、活性和稳定性,综述了为改善固定化酶微环境所进行改进研究的进展。
It is very important to select and design the novel carriers for enzyme encapsulation, especially to create the appropriate microenvironment for encapsulated enzymes in the carriers. The key factors affecting the enzyme microenvironment in the carrier for enzyme encapsulation were analyzed and proposed in this review, including the hydrophilicity, the structure and morphology, and the reactivity of the carriers. Water content in the carrier is determined by its hydrophilicity. The enzyme stability and conformational transitions are impacted by the cage effect formed by the carrier structure and morphology, and by the reactivity of the carriers, such as the activity of covalent linking, hydrogen bonding and electrostatic interaction. Meanwhile, the diffusion properties of substrate/product and the enzyme accessibility are affected by the pore structure and distribution, and by the reactivity of carriers. Then encapsulation processes for normally used carriers are presented, including sol-gel silica, polymer hydrogel and polymer-silica hybrid composite. According to the factors mentioned above, the enzyme loading efficiency, catalytic activities, and stability used the three types of carriers for enzyme encapsulation were analyzed. Also promotions to modify the microenvironment of encapsulated enzymes in the three types of carrier are discussed.

中图分类号: 

()

[ 1 ] West J M, Kantrowitz E R. J . Am. Chem. Soc. , 2003 , 125 :9924 —9925
[ 2 ] Hsu A F , Thomas A F , Siyan S. Appl . Biochem. , 2000 , 31 :179 —183
[ 3 ] Meyer M, Fischer A , Hoffmann H. J . Phys. Chem. B , 2002 ,106 : 1528 —1533
[ 4 ] Blandino A , Macías M, Cantero D. Process Biochem. , 2001 ,36 : 601 —606
[ 5 ] Beinum W V , Meeussen J C L , Riemsdijk W H V. Enviro. Sci .Technol . , 2000 , 34 : 4902 —4907
[ 6 ] Reischwitz A , Reh K D. Enzyme Microb. Tech. , 1995 , 17 :457 —461
[ 7 ] Betigeri S S , Neau S H. Biomaterials , 2002 , 23 : 3627 —3636
[ 8 ] Sassi Z , Bureau J C , Bakkali A. Vib. Spectrosc. , 2002 , 28 :299 —318
[ 9 ] Wu X J , Choi M M F. Anal . Chem. , 2004 , 76 : 4279 —4285
[10] Zaremba C M, Stuckyt G D. Curr. Opin. Solid St . M. , 1996 ,1 : 425 —429
[11] Gill I , Ballesteros A. J . Am. Chem. Soc. , 1998 , 120 : 8587 —8598
[12] Kato M, Saruwatari H , Sakai-Kato K, et al . J . Chromatogr. A ,2004 , 1044 : 267 —270
[13] Liu D M, Chen I W. Acta Mater. , 1999 , 47 : 4535 —4544
[14] Frenkel-Mullerad H , Avnir D. J . Am. Chem. Soc. , 2005 , 127 :8077 —8081
[15] Chen Q , Kenausis G L , Heller A. J . Am. Chem. Soc. , 1998 ,120 : 4582 —4585
[16] Khayet M. AIChE J . , 2002 , 48 : 2833 —2843
[17] Huang R Y M, Pal R , Moon G Y. J . Memb. Sci . , 2000 , 167 :275 —289
[18] Dave B C , Soyez H , Miller J M, et al . Chem. Mater. , 1995 , 7 :1431 —1434
[19] Flora K, Brennan J D. Anal . Chem. , 1998 , 70 : 4505 —4513
[20] Das T K, Khan I , Rousseau D L. J . Am. Chem. Soc. , 1998 ,120 : 4752 —4762
[21] Wambolt CL , Saavedra S S. J . Sol-Gel Sci . Technol . , 1996 , 7 :53 —57
[22] Ferreira L , Ramos M A , Dordick J S , et al . J . Mol . Catal . B :Enzym. , 2002 , 835 : 1 —11
[23] Dave B C , Dunn B , Valentine J S , et al . Anal . Chem. , 1994 ,66 : 1120A —1127A
[24] Avnir D , Braun S , Lev O , et al . Chem. Mater. , 1994 , 6 :1605 —1614
[25] Wang J , Pamidi P , Park D. Anal . Chem. , 1996 , 68 : 2705 —2708
[26] Heller J , Heller A. J . Am. Chem. Soc. , 1998 , 120 : 4586 —4590
[27] Xu J . Thesis for Doctor Degree of Drexel University , 2000
[28] Jordan J D , Dunbar R A , Bright F V. Anal . Chem. , 1995 , 67 :2436 —2443
[29] Flora K, Brennan J D. Chem. Mater. , 2001 , 13 : 4170 —4179
[30] Gottfried D S , Kagan A , Hoffman B M, et al . J . Phys. Chem.B , 1999 , 103 : 2803 —2087
[31] Kadnikova E N , Kostic N M. J . Non-Cryst . Solids , 2001 , 283 :63 —68
[32] Dooky M A , Baker GA , Pandey S , et al . Chem. Mater. , 2000 ,12 : 1142 —1147
[33] Pogorevc M, Strauss U T , Riermeier T , et al . Tetrahedron :Asymme. , 2002 , 13 : 1443 —1447
[34] Baker GA , Jordan J D , Bright F V. J . Sol-Gel Sci . Technol . ,1998 , 11 : 43 —54
[35] Cao L. Curr. Opin. Chem. Biol . , 2005 , 9 : 217 —226
[36] Badjic J D , Kostic N M. J . Am. Chem. Soc. , 1998 , 120 :4366 —4371
[37] Badjic J D , Kostic N M. J . Phys. Chem. B , 2000 , 104 :11081 —11087
[38] Shen C , Kostic N M. J . Am. Chem. Soc. , 1997 , 119 : 1304 —1312
[39] Shen C , Kostic N M. J . Electroanal . Chem. , 1997 , 438 : 61 —65
[40] Bronshtein A , Aharonson N , Avnir D , et al . Chem. Mater. ,1997 , 9 : 2632 —2639
[41] Livage J , Roux C , Da C J M, et al . J . Sol2Gel Sci . Technol . ,1996 , 7 : 45 —51
[42] Henchl L L , West J K. Chem. Rev. , 1990 , 90 : 33 —72
[43] Miller J M, Valentine J S , Zink J I. J . Non2Cryst . Solids , 1996 ,202 : 279 —289
[44] Bai Z W, Zhou Y K. React . Funct . Polym. , 2004 , 59 : 93 —98
[45] Choi M, Kleitz F , Liu D , et al . J . Am. Chem. Soc. , 2005 ,127 : 1924 —1932
[46] Wu H , Jiang Z Y, Xu S W, et al . Chin. Chem. Lett . , 2003 ,14 : 423 —425
[47] Smith K, Silvernail N J , Elgren T E , et al . J . Am. Chem.Soc. , 2002 , 124 : 4247 —4252
[48] Rao G V R , Krug M E , Balamurugan S , et al . Chem. Mater. ,2002 , 14 : 5075 —5080
[49] Lettau K, Warsinke A , Laschewsky A , et al . Chem. Mater. ,2004 , 16 : 2745 —2749
[50] Skrtica D , Antonucci J M. Biomaterials , 2003 , 24 : 2881 —2888
[51] Welch S A , Barker W W, Banfield J F. Geochim. Cosmochim.A. , 1999 , 63 : 1405 —1419
[52] Dashevsky A. Int . J . Pharm. , 1998 , 161 : 1 —5
[53] Lim F , Sun A M. Science , 1980 , 210 : 908 —910
[54] Rilling P , Walter T P , Vogt P W. J . Membr. Sci . , 1997 , 129 :283 —287
[55] Hearn E , Neufeld R J . Process Biochem. , 2000 , 35 : 1253 —1260
[56] Tanriseven A , Doˇgan S,. Process Biochem. , 2001 , 36 : 1081 —1083
[57] Mechmetoˇglu B, Ates S. Process Biochem. , 1997 , 32 : 433 —436
[58] Ro H S , Kim H S. Enzyme Microb. Technol . , 1991 , 13 : 920 —924
[59] Tanriseven A , Uludaˇg Y B , Doˇgan S. Enzyme Microb. Tech. ,2002 , 30 : 406 —409
[60] Coradin T , Livage J . C. R. Chimie , 2003 , 6 : 147 —152
[61] Mokari T , Sertchook H , Aharon A , et al . Chem. Mater. , 2005 ,17 : 258 —263
[62] Ji X, Hampsey J E , Hu Q , et al . Chem. Mater. , 2003 , 15 :3656 —3662
[63] Yu X H , Zhuo R X, Feng J , et al . J . Eur. Polym. , 2004 , 40 :2445 —2450
[64] Jiang Z Y, Xu S W, Lu Y, et al . J . Biomat . Sci . : Polym. E ,2006 , 17 : 21 —35
[65] Xu S W, Lu Y, Jiang Z Y, et al . J . Mol . Catal . B : Enzym.2006 , 43 : 68 —73
[66] Shchipunov Y A , Karpenko T Y, Bakunin L Y, et al . J .Biochem. Biophys. Meth. , 2004 , 58 : 25 —38
[67] Luckarift H R , Spain J C , Naik R R , et al . Nature Biotechnol . ,2004 , 22 : 211 —213
[68] Xu S W, Jiang Z Y, Lu Y, et al . Ind. Eng. Chem. Res. ,2006 , 45 : 511 —517
[69] Li Y, Yip W T. J . Am. Chem. Soc. , 2005 , 127 : 12756 —12757
[70] Luo T J M, Soong R , Lan E , et al . Nature Mater. , 2005 , 4 :220 —224
[71] Sakai S , Ono T , Ijima H , et al . Biomaterials , 2001 , 22 : 2827 —2834
[72] Xu S W, Lu Y, Jiang Z Y, et al . J . Biomat . Sci . : Polym. E ,2007 , 18 : 71 —80
[73] Asefa T , MacLachlan M J , Coombs N , et al . Nature , 1999 , 402 :867 —871
[74] Clark J H , Macquarrie D J . Chem. Commun. , 1998 , 853 —860
[75] Moller K, Bein T. Chem. Mater. , 1998 , 10 : 2950 —2963
[76] Moller K, Bein T , Fischer R X. Chem. Mater. , 1998 , 10 :1841 —1852
[77] Molenkamp W C , Watanabe M, Miyata H , et al . J . Am. Chem.Soc. , 2004 , 126 : 4476 —4477
[78] Wu C G, Bein T. Science , 1994 , 264 : 1757 —1759
[79] Matthijs G, Schacht E. Enzyme Microb. Tech. , 1996 , 19 :601 —605
[80] Kim J , Grate J W, Wang P. Chem. Eng. Sci . , 2006 , 61 :1017 —1026
[81] Yan M, Ge J , Liu Z , et al . J . Am. Chem. Soc. , 2006 , 128 :11008 —11009

[1] 李振兴, 骆支旺, 王平, 余振强, 陈尔强, 谢鹤楼. 发光液晶高分子:分子构筑、结构与性能及其应用[J]. 化学进展, 2022, 34(4): 787-800.
[2] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[3] 李金涛, 张明祖, 何金林, 倪沛红. 低共熔溶剂在高分子合成中的应用[J]. 化学进展, 2022, 34(10): 2159-2172.
[4] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[5] 林建云, 罗时荷, 杨崇岭, 肖颖, 杨丽庭, 汪朝阳. 生物基高分子型止血材料和伤口敷料[J]. 化学进展, 2021, 33(4): 581-595.
[6] 刘加伟, 王婧, 王其, 范曲立, 黄维. 激活型有机光声造影剂的应用[J]. 化学进展, 2021, 33(2): 216-231.
[7] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[8] 陈峥, 商赢双, 张海博, 姜振华. 高分子凝聚态结构与化学[J]. 化学进展, 2020, 32(8): 1115-1127.
[9] 陈香李, 刘凯强, 房喻. 分子凝胶:从结构调控到功能应用[J]. 化学进展, 2020, 32(7): 861-872.
[10] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[11] 闻静, 李禹红, 王莉, 陈秀楠, 曹旗, 何乃普. 基于壳聚糖二氧化碳智能材料[J]. 化学进展, 2020, 32(4): 417-422.
[12] 王阳, 黄楚森, 贾能勤. 监测细胞微环境及活性分子的有机小分子荧光探针[J]. 化学进展, 2020, 32(2/3): 204-218.
[13] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[14] 白阳, 阎晓晨, 刘彩萍, 姚灏. H型聚合物的合成及性质[J]. 化学进展, 2020, 32(12): 1879-1884.
[15] 潘朝莹, 马建中, 张文博, 卫林峰. 柔性导电高分子复合材料在应变传感器中的应用*[J]. 化学进展, 2020, 32(10): 1592-1607.
阅读次数
全文


摘要

载体对包埋酶微环境的影响分析