English
新闻公告
More
化学进展 2007, Vol. 19 Issue (9): 1393-1399 前一篇   后一篇

• 综述与评论 •

电场敏感的智能性水凝胶*

尚婧 陈新** 邵正中   

  1. 聚合物分子工程教育部重点实验室 复旦大学高分子科学系 上海 200433
  • 收稿日期:2005-09-26 修回日期:2006-10-30 出版日期:2007-09-24 发布日期:2007-09-25
  • 通讯作者: 陈新

The Electric-Field-Sensitive Hydrogels

Shang Jing;Chen Xin**;Shao Zhengzhong   

  1. Key Laboratory of Molecular Engineering of Polymers,Ministry of Education,Department of Macromolecular Science,Fudan University,Shanghai 200433,China
  • Received:2005-09-26 Revised:2006-10-30 Online:2007-09-24 Published:2007-09-25
  • Contact: Chen Xin
电场敏感水凝胶是一类在电刺激下可以溶胀、收缩或弯曲的智能性水凝胶,其主要特点是可以将电能转化为机械能。本文对近年来已见报道的电场敏感水凝胶的研究进行了较为详细的综述。同时,对电场敏感水凝胶的响应机理、影响水凝胶响应性的因素以及其在能量转换装置、人工肌肉等方面的应用也作了相应的介绍。
Electric-field-sensitive hydrogel is one kind of intelligent hydrogels that exhibits swelling, shrinking or bending behavior on the application of an electric field. The main advantage of such a kind of hydrogel is that it can transform electrical energy into mechanical energy. In this paper, the recent research on electric-field-sensitive hydrogels is reviewed, in which the preparation and deformation mechanism of hydrogels are introduced. It is generally thought that the deformation of the hydrogel in an electric field is due to the change of osmotic pressure based upon the voltage-induced motion of ions in the electrolyte solution and may be influenced by a number of factors, including pH, ionic strength of the bath solution, as well as the electric potential imposed across the hydrogels. At last, the applications of such an electric-field-sensitive hydrogel, for example, in the fields of energy transducing devices, artificial muscles, and controlled drug delivery system are also presented.

中图分类号: 

()

[ 1 ] Qiu Y, Park K. Adv. Drug Deliv. Rev. , 2001 , 53 : 321 —339
[ 2 ] Ruel-Gariepy E , Shive M, Bichara A , et al . Eur. J . Pharm.Biopharm. , 2004 , 57 : 53 —63
[ 3 ] Liang H F , Hong M H , Ho R M, et al . Biomacromolecules ,2004 , 5 : 1917 —1925
[ 4 ] Tomatsu I , Hashidzume A , Harada A. Macromolecules , 2005 ,38 : 5223 —5227
[ 5 ] Kim S J , Yoon S G, Lee Y M, et al . Biosens. Bioelectron. ,2004 , 19 : 531 —536
[ 6 ] Menager C , Sandre O , Mangili J , et al . Polymer , 2004 , 45 :2475 —2481
[ 7 ] Zhu Y, Zheng L Y. J . Drug Deliv. Sci . Technol . , 2006 , 16 :55 —58
[ 8 ] Han I S , Han M H , KimJ , et al . Biomacromolecules , 2002 , 3 :1271 —1275
[ 9 ] Zhang Y X, Wu F P , Li M Z , et al . Polymer , 2005 , 46 : 7695 —7700
[10] Liu T Y, Hu S H , Liu D M, et al . Langmuir , 2006 , 22 : 5968 —5978
[11] Shiga T. Adv. Polym. Sci . , 1997 , 134 : 131 —163
[12] Lira L M, de Torresi S I C. Electrochem. Commun. , 2005 , 7 :717 —723
[13] Wallmersperger T , Kroplin B , Gulch R W. Mech. Mater. ,2004 , 36 : 411 —420
[14] Shahinpoor M. Smart Mater. Struct . , 1994 , 3 : 367 —372
[15] Hamlen R P , Kent C E , Shafer S N. Nature , 1965 , 206 : 1149 —1150
[16] Tanaka T , Nishio I , Sund S , et al . Science , 1982 , 218 : 467 —469
[17] Osada Y, Okuzaki H , Hori H. Nature , 1992 , 355 : 242 —244
[18] Kim S J , Kim H I , Park S J , et al . Smart Mater. Struct . , 2005 ,14 : 511 —514
[19] Kim H I , Park S J , Kim S I , et al . Synth. Met . , 2005 , 155 :674 —676
[20] Kurkuri M D , Lee J , Han J H. Smart Mater. Struct . , 2006 , 15 :417 —423
[21] Alexander G D , Raushan B K, Gulzhan K, et al . Polym. Int . ,2003 , 52 : 883 —891
[22] Yao L , Krause S. Macromolecules , 2003 , 36 : 2055 —2065
[23] Moschou E A , Madou M J , Bachas L G, et al . Sens. Actuator B :Chem. , 2006 , 115 : 379 —383
[24] Li L , Hsieh Y L. Nanotechnology , 2005 , 16 : 2852 —2860
[25] Homma M, Seida Y, Nakano Y. J . Appl . Polym. Sci . , 2000 ,75 : 111 —118
[26] Kim S J , Lee K J , Kim S I , et al . J . Appl . Polym. Sci . , 2003 ,89 : 2301 —2305
[27] Fei J Q , Zhang Z P , Gu L X. Polym. Int . , 2002 , 51 : 502 —509
[28] Kim S J , Yoon S G, Lee Y H , et al . Polym. Int . , 2004 , 53 :1456 —1460
[29] Kim S J , Yoon S G, Lee S M, et al . Sens. Actuator B : Chem. ,2003 , 96 : 1 —5
[30] Kim SJ , Shin S R , Lee S M, et al . Smart Mater. Struct . , 2004 ,13 : 1036 —1039
[31] Kim S J , Park S J , Shin M S , et al . J . Appl . Polym. Sci . ,2002 , 86 : 2290 —2295
[32] Kim S J , Shin S R , Lee J H , et al . J . Appl . Polym. Sci . ,2003 , 90 : 91 —96
[33] Kim S J , Yoon S G, Kim S I. J . Polym. Sci . Part B : Polym.Phys. , 2004 , 42 : 914 —921
[34] Kim S J , Park S J , Kim I Y, et al . J . Appl . Polym. Sci . ,2002 , 86 : 2285 —2289
[35] Kim S J , Yoon S G, Lee K B , et al . Solid State Ion. , 2003 ,164 : 199 —204
[36] Li R X, Zhang X Z , Zhao J S , et al . J . Appl . Polym. Sci . ,2006 , 101 : 3493 —3496
[37] Liu G Q , Zhao X P. J . Macromol . Sci . Pure Appl . Chem. ,2005 , A42 : 51 —59
[38] Lee C K, Kim S J , Kim S I , et al . Smart Mater. Struct . , 2006 ,15 : 607 —611
[39] Sun S , Mak A F T. J . Polym. Sci . Part B : Polym. Phys. ,2001 , 39 : 236 —246
[40] Sun S , Wong Y W, Yao K D , et al . J . Appl . Polym. Sci . ,2000 , 76 : 542 —551
[41] De Rossi D E , Chiarell P , Buzzigoli G, et al . Trans. Am. Soc.Artif . Intern. Organs , 1986 , 32 : 157 —164
[42] Grimshaw P E , NussbaumJ H , Grodzinsky A J , et al . J . Chem.Phys. , 1990 , 93 : 4462 —4472
[43] Doi M, Matsumoto M, Hirose Y. Macromolecules , 1992 , 25 :5504 —5511
[44] Gong J P , Nitta T , Osada Y. J . Phys. Chem. , 1994 , 98 :9583 —9587
[45] Kwon I C , Bae Y H , Kim S W. J . Polym. Sci . Part B : Polym.Phys. , 1994 , 32 : 1085 —1092
[46] Shiga T , Kurauchi T. J . Appl . Polym. Sci . , 1990 , 39 : 2305 —2320
[47] Shiga T , Hirose Y, Okada A , et al . J . Appl . Polym. Sci . ,1992 , 44 : 249 —253
[48] Yuk S H , Lee H B. J . Polym. Sci . Part B : Polym. Phys. ,1993 , 31 : 487 —489
[49] Bay L , West K, Sommer-Larsen P , et al . Adv. Mater. , 2003 ,15 : 310 —313
[50] Asaka K, Fujiwara N. Electrochim. Acta , 2003 , 48 : 3465 —3471
[51] Schreyer H B , Gebhart N , Kim K J , et al . Biomacromolecules ,2000 , 1 : 642 —647
[52] Paxton R A , Al-Jumaily A M, Easteal A J . Polym. Test , 2003 ,22 : 371 —374
[53] Moschou E A , Peteu S F , Bachas L G, et al . Chem. Mater. ,2004 , 16 : 2499 —2502
[54] Kim S Y, Lee Y M. J . Appl . Polym. Sci . , 1999 , 74 : 1752 —1761
[55] Kagatani S , Shinoda T , Konno Y, et al . J . Pharm. Sci . , 1997 ,86 : 1273 —1277
[56] Murdan S. J . Control . Release , 2003 , 92 : 1 —16

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[3] 戚琦, 徐佩珠, 田志东, 孙伟, 刘杨杰, 胡翔. 钠离子混合电容器电极材料的研究进展[J]. 化学进展, 2022, 34(9): 2051-2062.
[4] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[5] 杨一舟, 彭兵权, 雷晓玲, 方海平. 离子溶液中的芳香环:反常化学计量比的二维晶体和其铁磁性[J]. 化学进展, 2022, 34(7): 1524-1536.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[8] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[9] 宫悦, 程一竹, 胡银春. 高分子导电水凝胶的制备及在柔性可穿戴电子设备中的应用[J]. 化学进展, 2022, 34(3): 616-629.
[10] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[11] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[12] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[13] 田少鹏, 任花萍, 陈明淑, 苗宗成, 谭猗生. 非计量Zn-Cr尖晶石中离子占位对催化合成气合成异丁醇中的关键作用[J]. 化学进展, 2022, 34(1): 155-167.
[14] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[15] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
阅读次数
全文


摘要

电场敏感的智能性水凝胶*