English
新闻公告
More
化学进展 2007, Vol. 19 Issue (9): 1282-1290 前一篇   后一篇

• 综述与评论 •

具可见光活性的氮掺杂二氧化钛光催化剂*

方晓明;张正国;陈清林   

  1. 华南理工大学化工与能源学院 传热强化与过程节能教育部重点实验室 广州 510640
  • 收稿日期:2006-09-14 修回日期:2006-12-05 出版日期:2007-09-24 发布日期:2007-09-25
  • 通讯作者: 方晓明

Nitrogen Doped TiO2 Photocatalysts with Visible-Light Activity

Fang Xiaoming**; Zhang Zhengguo; Chen Qinglin   

  1. The Key lab of Enhanced Heat Transfer and Energy Conservation, Ministry of Education, School of Chemical and Energy, South China University of Technology, Guangzhou 510640, China
  • Received:2006-09-14 Revised:2006-12-05 Online:2007-09-24 Published:2007-09-25
  • Contact: Fang Xiaoming
以氮掺杂为代表的非金属掺杂型TiO2光催化剂被誉为“第二代光催化材料”。本文首先系统评述了氮掺杂二氧化钛的制备方法,然后详细阐述了在N掺杂TiO2研究中关于其可见光活性机制以及掺杂N在TiO2晶格中的存在状态等方面的争议。N掺杂TiO2粉末的制备方法主要有氨气气氛下的热处理工艺、水解沉淀法、溶胶-凝胶法以及机械化学法等;N掺杂TiO2薄膜的制备方法主要包括磁控溅射法、脉冲激光沉积法以及金属有机化学气相沉积法等。已提出的关于N掺杂TiO2可见光活性机制的观点有N2P与O2P能级相杂化、形成N 2p孤立能态、氧空位的作用以及具顺磁性特征的杂质敏化。关于掺杂N在TiO2晶格中存在状态的分歧在于XPS N 1s谱中特征峰的位置及其归属的解析。文章最后指出了氮掺杂二氧化钛催化剂研究中有待解决的问题及今后的发展方向。
Anion-doped TiO2 photocatalysts are considered the second-generation photocatalytic materials, which nitrogen doped TiO2 is the representative. The methods for preparing nitrogen doped TiO2 were systematically reviewed, and some controversy concerning the origin of visible-light responses for N-doped TiO2 and the state of N doped in TiO2 matrix were expanded in this paper. The methods for preparing nitrogen doped TiO2 powders mainly include the heat treatment under NH3 flow, the hydrolytic precipitation, the sol-gel process and the mechanochemical method. The methods for preparing nitrogen doped TiO2 films mainly include magnetron sputtering, pulsed laser deposition and metal-organic chemical vapor deposition. several different mechanisms for the visible-light activity of N-doped TiO2 have been proposed, which are the mixing of N 2p and O 2p orbits, the formation of an N-induced isolated narrow band, the presence of oxygen vacancies, and the sensitization by paramagnetic impurity. The controversy concerning the state of N doped in TiO2 matrix lies in the assignment of the peak feature in the XPS N 1s spectrum foTiO2r nitrogen doped TiO2. Finally, the problems involved studies on nitrogen doped TiO2 photocatalysts and the future developing trends are presented.

中图分类号: 

()

[ 1 ] Hoffman M N , Martin S T , Choi W Y, et al . Chem. Rev. ,1995 , 95 : 69 —76
[ 2 ] Fujishima A , Rao T N , Tryk D A. J . Photochem. Photobio. C ,2000 , 1 : 1 —21
[ 3 ] Bilmes S A , Mandelbaum P , Alvarez F , et al . J . Phys. Chem.B , 2000 , 104 : 9851 —9858
[ 4 ] Diebold U. Surf . Sci . Rept . , 2003 , 48 : 53 —229
[ 5 ] Kisch H , Zang L , Lange C , et al . Angew. Chem. Int . Ed.Engl . , 1998 , 37 : 3034 —3036
[ 6 ] Cho Y M, Choi W Y, Lee C H , et al . Environ. Sci . Technol . ,2001 , 35 : 966 —970
[ 7 ] Anpo M, Takeuchi M. J . Catal . , 2003 , 216 : 505 —516
[ 8 ] Zhao W, Chen C C , Li X Z , et al . J . Phys. Chem. B , 2002 ,106 : 5022 —5028
[ 9 ] Dawson A , Prashant V K. J . Phys. Chem. B , 2001 , 105 :960 —966
[10] Teruhisa O , Fumihiro T. J . Photochem. Photobio. A: Chem. ,1999 , 127 : 107 —110
[11] Asahi R , Morikawa T , Ohwaki T , et al . Science , 2001 , 293 :269 —271
[12] Umebayashi T , Yamaki T , Yamamoto S , et al . J . Appl . Phys. ,2003 , 93(9) : 5156 —5160
[13] Irie H , Watanabe Y, Hashimoto K. Chem. Lett . , 2003 , 32(8) :772 —773
[14] Yu J C , Yu J G, Ho W K, et al . Chem. Mater. , 2002 , 14 :3808 —3816
[15] Wang H , Lewis J P. J . Physics : Condensed Matter , 2006 , 18(2) : 421 —434
[16] 陈松哲(Chen S Z) , 张彭义(Zhang P Y) , 祝万鹏(Zhu W P)等. 化学进展(Progress in Chemistry) , 2004 , 16(4) : 613 —619
[17] 刘中清(Liu Z Q) , 葛昌纯( Ge C C) . 化学进展( Progress in Chemistry) , 2006 , 18(2/3) : 168 —175
[18] Irie H , Watanabe Y, Hashimoto K. J . Phys. Chem. B , 2003 ,107 : 5483 —5486
[19] Kosowska B , Mozia S , Morawski A W, et al . Sol . Energy Mater.Sol . Cells , 2005 , 88 (3) : 269 —280
[20] Silveyra R , Saenz L D T , Flores W A , et al . Catalysis Today ,2005 , 107/108 : 602 —605
[21] Fang X M, Zhang Z G, Chen Q L , et al . J . Solid State Chem. ,2007 , 180 : 1325 —1332
[22] Kobayakawa K, Murakami Y, Sato Y. J . Photochem. Photobio.A , 2005 , 170 (2) : 177 —179
[23] Nosaka Y, Matsushita M, Nishino J , et al . Sci . Tech. Adv.Mater. , 2005 , 6 (2) : 143 —148
[24] Sato S. Chem. Phys. Lett . , 1986 , 123 (12) : 126 —128
[25] Ihara T , Miyoshi M, Iriyama Y, et al . Appl . Catal . B , 2003 , 42(4) : 403 —409
[26] Huang X H , Tang Y C , Hu C , et al . J . Environ. Sci . 2China ,2005 , 17 (4) : 562 —565
[27] Sakthivel S , Kisch H. Chemphyschem, 2003 , 4 (5) : 487 —490
[28] Jang J S , Kim H G, Ji S M, et al . J . Solid State Chem. , 2006 ,179 (4) : 1067 —1075
[29] Kuroda Y, Mori T , Yagi K, et al . Langmuir , 2005 , 21 : 8026 —8034
[30] Wang Z P , Cai W M, Hong X T , et al . Appl . Catal . B , 2005 ,57 (3) : 223 —231
[31] Di Valentin C , Pacchioni G, Selloni A , et al . J . Phys. Chem.B , 2005 , 109 : 11414 —11419
[32] Lin Z S , Orlov A , Lambert R M, et al . J . Phys. Chem. B ,2005 , 109 : 20948 —20952
[33] Gandhe A R , Fernandes J B. J . Solid State Chem. , 2005 , 178(9) : 2953 —2957
[34] Sakthivel S , Janczarek M, Kisch H. J . Phys. Chem. B , 2004 ,108 : 19384 —19387
[35] Wang Z P , Jun X, Cai W M, et al . J . Environ. Sci . 2China ,2005 , 17 (1) : 76 —80
[36] Sathish M, Viswanathan B , Gopinath C S , et al . Chem. Mater. ,2005 , 17 (25) : 6349 —6353
[37] Burda C , Chen XB , Gole J L , et al . Nano Lett . , 2003 , 3 (8) :1049 —1051
[38] Gole J L , Stout J D , Burda C , et al . J . Phys. Chem. B , 2004 ,108 : 1230 —1240
[39] Mrowetz M, Balcerski W, Colussi A J , et al . J . Phys. Chem. B ,2004 , 108 : 17269 —17273
[40] Yin S , Yamaki H , Komatsu M, et al . J . Mater. Chem. , 2003 ,13 (12) : 2996 —3001
[41] Yin S , Ihara K, Komatsu M, et al . Solid State Commun. , 2006 ,137 (3) : 132 —137
[42] Chen S F , Chen L , Gao S , et al . Chem. Phys. Lett . , 2005 , 413(4/6) : 404 —409
[43] Liu G, Li F , Chen Z G, et al . J . Solid State Chem. , 2006 , 179(1) : 331 —335
[44] Li D , Haneda H , Hishita S , et al . Mater. Sci . Eng. B , 2005 ,117 (1) : 67 —75
[45] Belver C , Bellod R , Fuerte A , et al . Appl . Catal . B , 2006 , 65(3/4) : 301 —308
[46] Yin S , Aita Y, Komatsu M, et al . J . Mater. Chem. , 2005 , 15(6) : 674 —682
[47] Yin S , Ihara K, Aita Y, et al . J . Photochem. Photobio. A ,2006 , 179 (1/2) : 105 —114
[48] Ghicov A , Macak J M, Tsuchiya H , et al . Nano Lett . , 2006 , 6(5) : 1080 —1082
[49] Mwabora J M, Lindgren T , Avendano E , et al . J . Phys. Chem.B , 2004 , 108 (52) : 20193 —20198
[50] Noguchi D , Kawamata Y, Nagatomo T. J . Electro. Chem. Soc. ,2005 , 152 (9) : D124 —D129
[51] Irie H , Washizuka S , Watanabe Y, et al . J . Electro. Chem.Soc. , 2005 , 152 (11) : E351 —E356
[52] Suda Y, Kawasaki H , Ueda T , et al . Thin Solid Films , 2004 ,453 : 162 —166
[53] Suda Y, Kawasaki H , Ueda T , et al . Thin Solid Films , 2005 ,475 (1/2) : 337 —341
[54] Xu P , Mi L , Wang P N. J . Crystal . Growth , 2006 , 289 (2) :433 —439
[55] Pradhan S K, Reucroft P J . J . Crystal . Growth , 2003 , 250 :588 —594
[56] Yates H M, Nolan M G, Sheel D W, et al . J . Photochem.Photobio. , 2006 , 179 (1/2) : 213 —223
[57] Yang M C , Yang T S , Wong M S. Thin Solid Films , 2004 , 469 :1 —5
[58] Wu P G, Ma C H , Shang J K. Appl . Phys. A , 2005 , 81 (7) :1411 —1417
[59] Pore V , Heikkila M, Ritala M, et al . J . Photochem. Photobio.A , 2006 , 177 (1) : 68 —75
[60] Yamada K, Nakamura H , Matsushima S , et al . Comptes Rendus Chimie , 2006 , 9 (5/6) : 788 —793
[61] Nakamura R , Tanaka T , Nakato Y. J . Phys. Chem. B , 2004 ,108 (30) : 10617 —10620
[62] Wang Y, Doren D J . Solid State Commun. , 2005 , 136 : 186 —189
[63] Lee J Y, Park J , Cho J H. Appl . Phys. Lett . , 2005 , 87 (1) :art no. 011904
[64] Sakatani Y, Nunoshige J , Ando H , et al . Chem. Lett . , 2003 ,32 : 1156 —1157
[65] Livraghi S , Votta A , Paganini M C , et al . Chem. Commun. ,2005 , (4) : 498 —500
[66] Sato S , Nakamura R , Abe S. Applied Catal . A , 2005 , 284 (1/2) : 131 —137
[67] Martyanov I N , Uma S , Rodrigues S , et al . Chem. Commun. ,2004 , 2476 —2477
[68] Diawald O , Tompson T L , Zubkov T , et al . J . Phys. Chem. B ,2004 , 108 (19) : 6004 —6008
[69] Chen X B , Burda C. J . Phys. Chem. B , 2004 , 108 : 15446 —15449
[70] Gopinath C S. J . Phys. Chem. B , 2006 , 110 : 7079 —7080
[71] Burda C , Gole J . J . Phys. Chem. B , 2006 , 110 : 7081 —7082
[72] Li H X, Li J X, Huo Y N. J . Phys. Chem. B , 2006 , 110 :1559 —1565
[73] Orlov A , Tikhov M S , Lambert R M. Comptes Rendus Chimie ,2006 , 9 (5P6) : 794 —799
[74] Irokawa Y, Moridawa T , Aoki K, et al . Phys. Chem. Chem.Phys. , 2006 , 8 (9) : 1116 —1121
[75] Tachikawa T , Takai Y, Yojo S , et al . J . Phys. Chem. B , 2006 ,110 (26) : 13158 —13165

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[6] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[9] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[10] 唐晨柳, 邹云杰, 徐明楷, 凌岚. 金属铁络合物光催化二氧化碳还原[J]. 化学进展, 2022, 34(1): 142-154.
[11] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[12] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[13] 陈肖萍, 陈巧珊, 毕进红. 光催化降解土壤中多环芳烃[J]. 化学进展, 2021, 33(8): 1323-1330.
[14] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[15] 毕洪飞, 刘劲松, 吴正颖, 索赫, 吕学良, 付云龙. 硫化铟锌的改性合成及光催化特性[J]. 化学进展, 2021, 33(12): 2334-2347.