English
新闻公告
More
化学进展 2007, Vol. 19 Issue (11): 1832-1838 前一篇   

• 综述与评论 •

秸秆超(亚)临界水预处理与水解技术*

赵岩1 王洪涛1** 陆文静1 李冬2   

  1. (1 清华大学环境科学与工程系 北京 100084;
    2 北京工业大学水质科学与水环境恢复重点实验室 北京 100022)
  • 收稿日期:2007-01-15 修回日期:2007-04-13 出版日期:2007-11-14 发布日期:2007-11-25
  • 通讯作者: 王洪涛

Supercritical/Subcritical Technology for Pretreatment and Hydrolyzation of Stalks

Zhao Yan1 Wang Hongtao1** Lu Wenjing1 Li Dong2   

  1. (1.Department of Environmental Science and Technology, Tsinghua University, Beijing, 100084, China;
    2.Key laboratory of water science and water environment recovery, Beijing University of Technology, Beijing 100022, China)
  • Received:2007-01-15 Revised:2007-04-13 Online:2007-11-14 Published:2007-11-25
  • Contact: Wang Hongtao
秸秆的资源化特别是乙醇化技术由于其技术可行性和产物高值化受到了广泛关注。预处理与水解是乙醇化的关键过程。目前针对秸秆的转化已经开展了多种化学或生物技术的研究,其中超(亚)临界技术与传统技术相比显示了独特的优势,如更高的反应速率、不需催化剂、无产物抑制等。本文在总结秸秆传统预处理与水解技术的基础上,对秸秆超(亚)临界水预处理与水解的过程和机理,特别是超临界亚临界组合技术的研究现状、工艺及其相关研究的进展进行了综述和分析,并阐述了超临界亚临界组合技术首先在超临界水中打破纤维结构进行初级水解,再通过亚临界反应将初级水解产物低聚糖进一步水解为葡萄糖的基本原理。最后对超(亚)临界技术在秸秆资源化领域的研究和应用前景进行了展望。
The resourcilization technology of stalks, typically as ethanol production technology, has caught much attention due to its feasibility and valuable production. Pretreatment and hydrolyzation are the key processes of ethanol production from stalks, and multifarious chemical and biological technologies have been developed for stalks conversion. Supercritical/ subcritical technology demonstrated obvious advantages over traditional ways, such as much higher reaction rate, not requiring additional catalyst, and no inhibitory reaction of products. Progress in research and development of supercritical/ subcritical technology for pretreatment and hydrolyzation is critically reviewed in this paper, especially the principle, process and interrelated research of combined supercritical/ subcritical technology, which includes the primary treatment in supercritical water for separating the polymeric components and hydrolyzing of cellulose to oligosaccharides, and the secondary treatment in subcritical water for hydrolyzing of oligosaccharides to glucose. Additional information on the research of hydrothermal treatment is also provided. Furthermore, the prospect of research and application of supercritical/ subcritical technology is discussed.

中图分类号: 

()

[ 1 ] 马晓建(Ma X J ) , 赵银峰(Zhao Y F) , 祝春进(Zhu C J ) 等.食品与发酵工业(Food and Fermentation Industries) , 2004 , 30(11) : 77 —81
[ 2 ] 李资玲(Li Z L) , 刘成梅(Liu C M) , 刘伟(Liu W) 等. 江西食品工业(Jiangxi Food Industry) , 2004 , (4) : 36 —38
[ 3 ] 于斌( Yu B) , 齐鲁(Qi L) . 化工进展(Chemical Industry and Engineering Progress) , 2006 , 25 (3) : 244 —249
[ 4 ] Sun Y, Cheng J J . Bioresource Technology , 2005 , 96 : 1599 —1606
[ 5 ] Saha B C , Iten L B , Cotta M A , et al . Process Biochemistry ,2005 , 40 : 3693 —3700
[ 6 ] Xu F , Sun R , Fowler P , et al . Carbohydrate Research , 2005 ,340 (1) : 97 —106
[ 7 ] Song C C , Hu H Q , Zhu S W, et al . Energy &Fuels , 2004 , 18(1) : 90 —96
[ 8 ] 罗鹏(Luo P) , 刘忠(Liu Z) . 林业科技( Forestry Science & Technology) , 2005 , 30 (3) : 53 —56
[ 9 ] 王树荣(Wang S R) , 庄新姝(Zhuang X Z) , 骆仲泱(Luo Z Y)等. 工程热物理学报(Journal of Engineering Thermophysics) ,2006 , 27 (5) : 741 —744
[10] 田沈(Tian S) , 徐鑫(Xu X) , 孟繁燕(Meng F Y) 等. 农业工程学报( Transactions of the Chinese Society of Agricultural Engineering) , 2006 , 22 (Z1) : 221 —224
[11] 张强(Zhang Q) , 陆军(Lu J ) , 侯霖(Hou L) 等. 酿酒科技(Liquor-making Science & Technolosy) , 2004 , (4) : 57 —58
[12] 段钢(Duan G) , 孙长平(Sun C P) . 食品与发酵工业( Food and Fermentation Industries) , 2005 , 31 (5) : 73 —77
[13] Kaur P. Bioresource Technology , 1998 , 66 (3) : 267 —269
[14] Garrote G, Domínguez H , Parajó J C. Holz als Roh- und Werkstoff , 1999 , 57 (3) : 191 —202
[15] Sasaki M, Kabyemela B , Malaluan R , et al . The Journal of Supercritical Fluids , 1998 , 13 : 261 —268
[16] 朱道飞(Zhu D F) , 王华(Wang H) , 包桂蓉(Bao G R) . 能源工程(Energy Engineering) , 2004 , 5 : 6 —10
[17] 金辉(Jin H) , 赵亚平(Zhao Y P) , 王大璞(Wang D P) . 现代化工(Modern Chemical Industry) , 2001 , 21 (12) : 56 —59
[18] Takuya Y, Hiroshi N , Yukihiko M. Journal of the Japan Instituteof Energy , 2005 , 84 (7) : 544 —548
[19] Jin F , Zhou Z, Enomoto H , et al . Chemistry Letters , 2004 , 33(2) : 126 —127
[20] Negro M J , Manzanares P , Ballesteros I , et al . Applied Biochemistry and Biotechnology , 2003 , 105/108 : 87 —100
[21] Goto M, Obuchi R , Hirose T, et al . Bioresource Technology ,2004 , 93 (3) : 279 —284
[22] 曲先锋(Qu X F) , 彭辉(Peng H) , 毕继诚(Bi J C) 等. 燃料化学学报(Journal of Fuel Chemistry and Technology) , 2003 , 31(3) : 230 —233.
[23] Kabyemela B M, Takigawa M, Adschiri T, et al . Ind. Eng.Chem. Res. , 1998 , 37 (2) : 357 —361
[24] Feng W, van der Kooi H J , de Swaan Arons J . Chemical Engineering and Processing , 2004 , 43 : 1459 —1467
[25] Feng W, van der Kooi H J , de Swaan Arons J . Chemical Engineering Journal , 2004 , 98 : 105 —113
[26] Mochidzuki K, Sakoda A , Suzuki M. Advances in Environmental Research , 2003 , 7 : 421 —428
[27] Mochidzuki K, Sakoda A , Suzuki M. Thermochimica Acta , 2000 ,348 : 69 —76
[28] Ogihara Y, Smith R L Jr. , Inomata H , et al . Cellulose , 2005 ,12 : 595 —606
[29] Sasaki M, Adschiri T, Arai K. American Institute of Chemical Engineers , 2004 , 50 (1) : 192 —202
[30] Sasaki M, Fang Z, Fukushima Y, et al . Ind. Eng. Chem. Res. ,2000 , 39 : 2883 —2890
[31] Jin F M, Kishita A , Moriya T, et al . Journal of Supercritical Fluids , 2001 , 19 : 251 —262
[32] Srokol Z, Bouche A G, van Estrik A , et al . Carbohydrate Research , 2004 , 339 (10) : 1717 —1726
[33] Ehara K, Saka S. Cellulose , 2002 , 9 : 301 —311
[34] Ehara K, Saka S. Journal of wood science , 2005 , 51 : 148 —153
[35] Nakata T, Miyafuji H , Saka S. Applied Biochemistry and Biotechnology , 2006 , 130 (1P3) : 476 —485
[36] Bonn G, Concin R , Bobleter O. Wood Science and Technology ,1983 , 17 : 195 —202
[37] Oomori T, Khajavi S H , Kimura Y, et al . Biochemical Engineering Journal , 2004 , 18 (2) : 143 —147
[38] Saka S , Ueno T. Cellulose , 1999 , 6 : 177 —191
[39] Karagoz S , Bhaskar T, Muto A , et al . Fuel , 2005 , 84 (7P8) :875 —884
[40] Miyafuji H , Nakata T, Ehara K, et al . Applied Biochemistry and Biotechnology , 2005 , 121 : 963 —971
[41] Jin F , Zheng J , Enomoto H , et al . Chemistry Letters , 2002 , 31(5) : 504 —505
[42] Jin F , Zhou Z, Kishita A , et al . Journal of Materials Science ,2006 , 41 (5) : 1495 —1500
[43] Jin F , Kishita A , Moriya T, et al . Chemistry Letters , 2002 , 31(1) : 88 —89
[44] Williams P T, Onwudili J . Energy & Fuels , 2006 , 20 : 1259 —1265
[45] 王洪涛(Wang H T) , 陆文静(Lu W J ) . 农村固体废物处理处置与资源化技术(Rural Solid Waste Disposal and Resources Technology) . 北京: 中国环境科学出版社(Beijing : China Environmental Science Press) , 2006. 7 —8

[1] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[2] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[3] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[4] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[5] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[6] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[7] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[8] 史利娜, 胡欣, 朱宁, 郭凯. 纤维素基介电材料[J]. 化学进展, 2020, 32(12): 2022-2033.
[9] 黄秉乾, 王立艳, 韦漩, 徐伟超, 孙振, 李庭刚. 低共熔溶剂预处理木质纤维素生产生物丁醇[J]. 化学进展, 2020, 32(12): 2034-2048.
[10] 易锦馨, 霍志鹏, AbdullahM.Asiri, KhalidA.Alamry, 李家星. 农林废弃生物质吸附材料在水污染治理中的应用[J]. 化学进展, 2019, 31(5): 760-772.
[11] 白蕾, 王艳凤, 霍淑慧, 卢小泉. 金属-有机骨架及其功能材料在食品和水有害物质预处理中的应用[J]. 化学进展, 2019, 31(1): 191-200.
[12] 乔颖, 腾娜, 翟承凯, 那海宁, 朱锦. 化学法催化纤维素高效水解成糖[J]. 化学进展, 2018, 30(9): 1415-1423.
[13] 杜海顺, 刘超, 张苗苗, 孔庆山, 李滨*, 咸漠. 纳米纤维素的制备及产业化[J]. 化学进展, 2018, 30(4): 448-462.
[14] 蒋叶涛, 宋晓强, 孙勇*, 曾宪海, 唐兴, 林鹿*. 基于木质生物质分级利用的组分优先分离策略[J]. 化学进展, 2017, 29(10): 1273-1284.
[15] 茹静, 耿璧垚, 童聪聪, 王海英, 吴胜春, 刘宏治. 纳米纤维素基吸附材料[J]. 化学进展, 2017, 29(10): 1228-1251.