English
新闻公告
More
化学进展 2007, Vol. 19 Issue (05): 700-712 前一篇   后一篇

• 综述与评论 •

微波与有机化学反应的选择性*

许家喜**   

  1. 北京大学化学与分子工程学院生物有机与分子工程教育部重点实验室,北京分子工程国家实验室 北京 100871
  • 收稿日期:2006-06-20 修回日期:2006-09-21 出版日期:2007-05-24 发布日期:2007-05-24
  • 通讯作者: 许家喜

Microwave Irradiation and Selectivities in Organic Reactions

Xu Jiaxi**   

  1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871,China
  • Received:2006-06-20 Revised:2006-09-21 Online:2007-05-24 Published:2007-05-24
本文综述了微波辅助下有机化学反应的选择性,包括化学选择性、区域选择性、顺反选择性、非对映选择性、对映选择性,与传统加热条件下反应选择性的区别。讨论了微波对有机化学反应选择性的影响。从文献报道的结果来看,虽然观察到了一些反应在微波照射与加热条件下显示出不同的选择性,但绝大部分例子并不是在严格相同的条件下进行的对比,还有一些虽然做了对比研究,但却忽略了温度的影响。对于绝大多数例子,微波产生的选择性的差别似乎都可以用热效应来解释。可以认为微波辅助的反应中基本不存在特殊的"非热效应"。微波辅助技术可以通过改变反应温度来实现改变某些反应的选择性。希望本文对微波效应和微波对有机反应加速效应的本质的理解提供一些有用信息。
The different selectivities, including chemoselectivity, regioselectivity, syn/trans selectivity, disatereoselectivity, and enantioselectivity, of organic reactions under the microwave-assisted and conventional heating conditions are reviewed. The effect of microwave on these selectivities is discussed. According to a survey of literature, although some differences on the selectivities between the microwave-assisted and classical heating conditions are observed in some reactions, most of the reactions are not conducted under the strict same conditions except for heating mode, such as in different solvents, even under solvent-free conditions, under the catalysis of different catalysts or additives, at different temperatures. Some examples are conducted under the same reaction systems, but at different temperatures. For most of examples , the effects of the microwave irradiation on the selectivities are possibly caused by the actually different temperature and could be explained by the thermal effect. I am prone to consider that no specific athermal effect exists generally in the microwave-assisted organic reactions. The microwave-assisted technology can tune selectivities via changing reaction temperature for some organic reactions. I hope this review will provide some useful information to understand the microwave effect on the organic reactions and the origin of the microwave-induced organic reaction enhancement chemical techniques.

中图分类号: 

()

[ 1 ] Lidstroem P , Tierney J , Wathey B , Westman J . Tetrahedron ,2001 , 57 : 9225 —9283
[ 2 ] Loupy A ( ed. ) . Microwaves in Organic Synthesis. Weinheim:Wiley-VCH , 2002
[ 3 ] Hayes B L. Aldrichimica Acta , 2004 , 37 : 66 —77
[ 4 ] Kappe C O. Angew. Chem. Int . Ed. , 2004 , 43 : 6250 —6284 and refs. therein
[ 5 ] Kappe C O , Stadler A. Microwaves in Organic and Medicinal Chemistry , Vol . 25 , from the Series , Methods and Principles in Medicinal Chemistry , (eds. Mannhold R , Kubinyi H , Folker G) .Weinheim: Wiley2VCH , 2005
[ 6 ] Yin W, Ma Y, Xu J X, Zhao Y F. J . Org. Chem. , 2006 , 71 :4312 —4315
[ 7 ] Perreux L , Loupy A. Tetrahedron , 2001 , 57 : 9199 —9223
[ 8 ] De La Hoz A , Díaz-Ortiz A , Moreno A. Current Org. Chem. ,2004 , 8 : 903 —918
[ 9 ] Patonay T , Varma R S , Vass A , Levai A , Dudas J . Tetrahedron Lett . , 2001 , 42 : 1403 —1406
[10] Shanmugasundaram M, Manikandan S , Raghunathan R.Tetrahedron , 2002 , 58 : 997 —1003
[11] Jayashankaran J , Manian RDRS , Raghunathan R. Tetrahedron Lett . , 2006 , 47 : 2265 —2270
[12] Camara C , Keller L , Dumas F. Tetrahedron : Asymmetry , 2003 ,14 : 3263 —3266
[13] Correc O , Guillu K, Hamelin J , Paquin L , Texier2Boullet F ,Toupet L. Tetrahedron Lett . , 2004 , 45 : 391 —395
[14] Paquin L , Toupet L , Hamelin J , Texier-Boullet F. Lett . Org.Chem. , 2005 , 2 : 334 —339
[15] Glasnov TN , Stadlbauer W, Kappe C O. J . Org. Chem. , 2005 ,70 : 3864 —3870
[16] Kaiser N F K, Bremberg U , Larhed M, Moberg C , Hallberg A.Angew. Chem. Int . Ed. , 2000 , 39 : 3596 —3598
[17] Lindsay K B , Tang M Y, Pyne S G. Synlett , 2002 , 731 —734
[18] Barluenga J , Fernández-Rodríguez MA , García-García P , Aguilar E , Merino I. Chem. Eur. J . , 2005 , 12 : 303 —313
[19] Georg G I ( ed) . The Organic Chemistry of β-Lactams. New York : Verlag Chemie , 1993
[20] Bose A K, Banik B K, Manhas M S. Tetrahedron Lett . , 1995 ,36 : 213 —216
[21] Manhas M S , Banik B K, Mathur A , Vincent J E , Bose A K.Tetrahedron , 2000 , 56 : 5587 —5601
[22] Podlech J , Linder M L. J . Org. Chem. , 1997 , 62 : 5873 —5883
[23] Jiao L , Liang Y, Zhang Q F , Zhang S W, Xu J X. Synthesis ,2006 , (4) : 659 —665
[24] Lindar M L , Podlech J . Org. Lett . , 2001 , 3 : 1849 —1851
[25] Liang Y, Jiao L , Zhang S W, Xu J X. J . Org. Chem. , 2005 ,70 : 334 —337
[26] Jiao L , Liang Y, Xu J X. J . Am. Chem. Soc. , 2006 , 128 :6060 —6069
[27] 王一恺(Wang Y K) , 杜大明(Du D M) , 许家喜(Xu J X) . 辽宁石油化工大学学报(J . Liaoning Univ. Petroleum Chem.Tech. ) , 2006 , 26 : 94 —95
[28] Wang Y K, Liang Y, Jiao L , Du D M, Xu J X. J . Org. Chem. ,2006 , 71 : 6983 —6990
[29] Li B N , Wang Y K, Du D M, Xu J X. J . Org. Chem. , 2007 ,72 : 990 —997
[30] Hu L B , Wang Y K, Li B N , Du D M, Xu J X. Tetrahedron ,Submitted
[31] Essers M, Muck-Lichtenfeld C , Haufe G. J . Org. Chem. , 2002 ,67 : 4715 —4721
[32] Yadav L D S , Singh A. Tetrahedron Lett . , 2003 , 44 : 5637 —5640
[33] Yadav L D S , Singh A. Synlett , 2003 , 63 —66
[34] Yadav L D S , Kapoor R. Tetrahedron Lett . , 2003 , 44 : 8951 —8954
[35] Romanova N N , Gravis A G, Leshcheva I F , Bundel Y G.Mendeleev Commun. , 1998 , (4) : 129 —130
[36] Micuch P , Fisera L , Cyranski M, Krygowski T M. Tetrahedron Lett . , 1999 , 40 : 167 —170
[37] Ericsson C , Engman L. J . Org. Chem. , 2004 , 69 : 5143 —5146
[38] Vega J A , Cueto S , Ramos A , Vaquero J J , Garcia-Navio J L ,Alvarez-Builla J . Tetrahedron Lett . , 1999 , 37 : 6413 —6416
[39] Fawcett J , Griffith G A , Percy J M, Uneyama E. Org. Lett . ,2004 , 6 : 1277 —1280
[40] Davies H M L , Beckwith R E J . J . Org. Chem. , 2004 , 69 :9241 —9247
[41] Xu J X, Wei T Z , Zhang Q H. J . Org. Chem. , 2003 , 68 :10146 —10151
[42] Xu J X, Wei T Z , Lin S S , Zhang Q H. Helv. Chim. Acta ,2005 , 88 : 180 —186
[43] Liu H , Xu J X. J . Mol . Cat . A: Chem. , 2006 , 244 : 68 —72
[44] Xu J X, Ma L G, Jiao P. Chem. Commun. , 2004 , ( 14) :1616 —1617
[45] Ma L G, Jiao P , Zhang Q H , Xu J X. Tetrahedron : Asymmetry ,2005 , 16 : 3718 —3734
[46] Moberg C , Bremberg U , Hallman K, Svensson M, Norrby P O ,Hallberg A , Larhed M, Csoregh I. Pure Appl . Chem. , 1999 ,71 : 1477 —1483
[47] Bremberg U , Lutsenko S , Kaiser N F , Larhed M, Hallberg A ,Moberg C. Synthesis , 2000 , 1004 —1008
[48] Westernmann B , Neuhaus C. Angew. Chem. Int . Ed. , 2005 ,44 : 4077 —4079
[49] Rodriguez B , Bolm C. J . Org. Chem. , 2006 , 71 : 2888 —2891
[50] Baghurst D R , Mingos D M P. Chem. Soc. Rev. , 1991 , 20 :1 —47
[51] Pollington S D , Bond G, Moyes R B , Whan D A , Candlin J P ,Jennings J R. J . Org. Chem. , 1991 , 56 : 1313 —1314
[52] Raner K D , Strauss C R. J . Org. Chem. , 1992 , 57 : 6231 —6234
[53] Laurent R , Laporterie A , Dubac J , Berlan J , Lefeuvre S , Audhuy M. J . Org. Chem. , 1992 , 57 : 7099 —7102
[54] Stuerga D , Gonon K, Lallemant M. Tetrahedron , 1993 , 49 :6229 —6234
[55] Raner K D , Strauss C R , Vyskoc F , Mokbel L. J . Org. Chem. ,1993 , 58 : 950 —953
[56] Raner K D , Strauss C R , Trainor R W, Thorn J S. J . Org.Chem. , 1995 , 60 : 2456 —2460
[57] Bagnell L , Cablewski T , Strauss C R , Trainor R W. J . Org.Chem. , 1996 , 61 : 7355 —7359
[58] Bagnell L , Bliese M, Cablewski T , Strauss C R , Tsanaktsidis J .Aust . J . Chem. , 1997 , 50 : 921 —926
[59] Kabza K G, Chapados B R , Gestwicki J E , McGrath J L. J . Org.Chem. , 2000 , 65 : 1210 —1214
[60] Kuhnert N. Angew. Chem. Int . Ed. , 2002 , 41 : 1863 —1866
[61] Strauss C R. Angew. Chem. Int . Ed. , 2002 , 41 : 3589 —3590
[62] Gabriel C , Gabriel S , Grant E H , Halstead B S J , Mingos D M P. Chem. Soc. Rev. , 1998 , 27 : 213 —223

[1] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[2] 尹钰, 马春慧, 李伟, 刘守新. 葡萄糖制备5-羟甲基糠醛的溶剂体系及转化机理[J]. 化学进展, 2021, 33(10): 1856-1873.
[3] 王洪红, 雷文, 李孝建, 黄仲, 贾全利, 张海军. 催化还原降解Cr(Ⅵ)[J]. 化学进展, 2020, 32(12): 1990-2003.
[4] 罗世鹏, 黄培强. 苹果酸——天然产物对映选择性全合成和合成方法学中多用途的手性合成砌块[J]. 化学进展, 2020, 32(11): 1846-1868.
[5] 陈兴鹏, 许家喜*. 非对称氮杂环丁烷的区域选择性开环反应[J]. 化学进展, 2017, 29(2/3): 181-197.
[6] 徐铁齐*. 极性乙烯基单体立体选择性聚合催化剂[J]. 化学进展, 2017, 29(2/3): 285-292.
[7] 何桥, 殷中琼, 陈华保, 张祖民, 王显祥, 乐贵洲. 茚及其衍生物的催化不对称合成[J]. 化学进展, 2016, 28(6): 801-813.
[8] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[9] 李思琦, 许家喜*. 非对称氧杂环丁烷的选择性开环[J]. 化学进展, 2016, 28(12): 1798-1810.
[10] 陈峰, 朱英杰. 磷酸钙纳米结构材料的微波辅助液相合成[J]. 化学进展, 2015, 27(5): 459-471.
[11] 蒋坤, 陈应春. 不对称三烯胺催化的发展[J]. 化学进展, 2015, 27(2/3): 137-145.
[12] 付钰洁, 唐守渊*. 微波波谱法研究水与有机/生物分子的分子配合物[J]. 化学进展, 2013, 25(06): 1042-1051.
[13] 周婵, 许家喜. 非对称环硫乙烷的区域选择性亲核开环反应[J]. 化学进展, 2012, 24(0203): 338-347.
[14] 石玉刚, 蔡燕, 励建荣, 朱延和. 离子液体中酶促区域选择性合成CFAE[J]. 化学进展, 2011, 23(11): 2247-2257.
[15] 唐守渊, 付钰洁, 夏之宁, 李百战. 微波波谱法研究分子系统内基团大幅度运动动力学[J]. 化学进展, 2011, 23(10): 2151-2159.
阅读次数
全文


摘要

微波与有机化学反应的选择性*