English
新闻公告
More
化学进展 2007, Vol. 19 Issue (0203): 267-275 前一篇   后一篇

• 综述与评论 •

单室固体氧化物燃料电池*

王康;邵宗平**   

  1. 南京工业大学化工学院化学工程系 省部共建材料化学教育部重点实验室 南京 210009
  • 收稿日期:2006-04-07 修回日期:2006-05-08 出版日期:2007-03-24 发布日期:2007-03-24
  • 通讯作者: 邵宗平

The Single Chamber Solid Oxide Fuel Cell

Wang Kang; Shao Zongping**   

  1. Key Laboratory of Materials-Oriented Chemical Engineering of Ministry of Education of China, College of Chemistry and Chemical Engineering, Nanjing University of Technology, Nanjing 210009, China
  • Received:2006-04-07 Revised:2006-05-08 Online:2007-03-24 Published:2007-03-24
单室固体氧化物燃料电池使矿物燃料和氧在同一气室中反应发电,具有无需密封、结构简单及抗热和机械性能强的特点,已经显示出作为便携式电源的良好发展前景,近几年来已成为燃料电池领域的一个研究热点。本文较为详细地介绍了单室固体氧化物燃料电池的发展背景、特点、工作原理和影响单室固体氧化物燃料电池性能的众多因素,阐述了它的发展历程及最新进展,并对其前景进行了展望。
Recently, there is an increasing interest on a novel type of fuel cell.,the single chamber fuel cell, which generates electricity through the reaction of fuel with oxygen within the same chamber. Such fuel cell has potential application in portable power supply because of its unique properties, such as sealant-free, simple cell/stack configuration, and good thermal/mechanical shock resistance. The present paper gives an thoroughly review in the recent progress on the single chamber solid oxide fuel cell. Main attentions are paid to its development background, characteristics, working principle, and various parameters that determinating its performance. The main block limits its future application and the possible solution are proposed.

中图分类号: 

()

[ 1 ] Ishiharal T , Sato K, Takita Y. J . Am. Ceram. Soc. , 1996 , 79 :913 —919
[ 2 ] Grove W R. Phil . Mag. , 1839 , 14 : 127 —130
[ 3 ] Mond L , Langer C. Proc. R. Soc. , 1889 , 46 : 296 —304
[ 4 ] Perry M L , Fuller T F. J . Electrochem. Soc. , 2002 , 149 : 59 —67
[ 5 ] Minh N Q. J . Am. Ceram. Soc. , 1993 , 76(3) : 563 —588
[ 6 ] Ishihara T , Sato K, Takita Y. J . Am. Ceram. Soc. , 1996 , 79 :913 —919
[ 7 ] Itoh H , Mori M, Mori N , Abe T. J . Power Sources , 1994 , 49 :315 —332
[ 8 ] Eyraud C , Lenoir J , Gery M. Compt . Rend. , 1961 , 252 :1599 —1603
[ 9 ] Gool W V. Philips Res. Reports , 1965 , 20 : 81 —93
[10] Louis G A , Lee J M. US 4 248 941 , 1981
[11] Dyer C K. Nature , 1990 , 343 : 547 —548
[12] Hibino T , Wang S. Electrochem. Solid2State Lett . , 1999 , 2(7) :317 —319
[13] Hibino T , Tsunekawa H. J . Electrochem. Soc. , 2000 , 147 (4) :1338 —1343
[14] Hibino T , Hashimoto A. J . Electrochem. Soc. , 2000 , 147 :2888 —2892
[15] Hibino T , Hashimoto A. Science , 2000 , 288 : 2031 —2036
[16] Hibino T , Hashimoto A , Inoue T , et al . J . Electrochem. Soc. ,2001 , 148 : 544 —549
[17] Hibino T , Hashimoto A , Yano M, et al . J . Electrochem. Soc. ,2002 , 149 : 133 —136
[18] Hibino T , Iwahara H. Chem. Lett . , 1993 , 7 : 1131 —1134
[19] Hibino T , Asano K, Iwahara H. Chem. Lett . , 1994 , 3 : 485 —488
[20] Hibino T , Ushiki K, Kuwahara Y. Solid State Ionics , 1996 , 91 :69 —74
[21] Hibino T , Kuwahara Y, Wang S. J . Electrochem. Soc. , 1999 ,146 : 2821 —2826
[22] Suzuki T , Jasinski P , Anderson H U , et al . J . Electrochem.Soc. , 2004 , 151 : 1678 —1682
[23] Suzuki T , Jasinski P , Anderson H U , et al . J . Electrochem.Soc. , 2004 , 7 : 391 —393
[24] Suzuki T , Jasinski P , Petrovsky V , et al . J . Electrochem. Soc. ,2004 , 151 (9) : 1473 —1476
[25] Suzuki T , Jasinski P , Petrovsky V , et al . J . Electrochem. Soc. ,2005 , 152 (3) : 527 —531
[26] Jasinski P , Suzuki T , Byars Z. Proc. 2Electrochem. Soc. , 2003 ,7 : 1101 —1108
[27] Asano K, Iwahara H. J . Electrochem. Soc. , 1997 , 144 : 3125 —3130
[28] Ishihara T , Yamada Y. Chem. Eng. Sci . , 1999 , 54 : 1535 —1540
[29] Cavala C A , Larsen G, Vayenas C G, et al . J . Phys. Chem. ,1993 , 97 : 6115 —6119
[30] Riess I , Vanderput P J , Schoonman J . Solid State Ionics , 1995 ,82 : 1 —4
[31] Lee A L , Zabransly R F , Huber W J . Ind. Eng. Chem. Res. ,1990 , 29 : 2821 —2826
[32] Achenbach E , Riensche E. J . Power Sources , 1994 , 54 : 283 —288
[33] Belyaev V D , Politova T I , Marina O A , et al . Appl . Catal . ,1995 , 133 : 47 —54
[34] Dicks A L. Appl . Catal . , 1996 , 61 : 47 —54
[35] Buergler B E , Siegrist M E , Gauckler L J . Solid State Ionics ,2005 , 176 : 1717 —1722
[36] Appleby A J . J . Power Sources , 1994 , 49 : 113 —124
[37] Asano K, Hibino T , Iwahara H. J . Electrochem. Soc. , 1995 ,142 : 3241 —3245
[38] Napporn T W, Jacques-Bedard X, Morin F , et al . J .Electrochem. Soc. , 2004 , 151 : 2088 —2094
[39] 衣宝廉(Yi B L) . 燃料电池—原理·技术·应用( Fuel Cell :Principle , Technology and Application) . 北京: 化学工业出版社(Beijing : Chemical Industry Press) , 2004. 468 —469
[40] Tomita A , Hirabayashi D , Hibino T , et al . Electrochem. Solid State Lett . , 2005 , 8 : 63 —65
[41] Murray E P , Tsai T , Barnett S A. Nature , 1999 , 400 : 649 —651
[42] Kim H , Lu C , Worrell W L , et al . J . Electrochem. Soc. , 2002 ,81 : 989 —996
[43] Tedmon C S , Spacil H SJr , Mittoff S P. J . Electrochem. Soc. ,1969 , 116 : 1170 —1175
[44] Ohno Y, Nagata S , Sato H. Solid State Ionics , 1981 , 4 : 439 —450
[45] Skinner S J . Int . J . Inorg. Mater. , 2001 , 3(2) : 113 —121
[46] Shao Z P , Kwak C , Haile S M. Solid State Ionics , 2004 , 175 :39 —46
[47] Shao Z P , Haile S M. Natrue , 2004 , 431 : 170 —173
[48] Yamaji K, Horita T , Ishikawa M, et al . Solid State Ionics , 1998 ,108 : 415 —421
[49] Huang P , Horky A , Petric A. J . Am. Ceram. Soc. , 1999 , 82 :2402 —2408
[50] Inaba H , Tagawa H. Solid State Ionics , 1996 , 83 : 1 —16
[51] Mogensen M, Sammes N M, Tompsett G A. Solid State Ionics ,2000 , 129 : 63 —94
[52] Gottesfeld S. Nature , 1990 , 345 : 673 —673
[53] Stefan I C , Jacobson C P , Visco S J , et al . Electrochem. Solid State Lett . , 2004 , 7(7) : 198 —200
[54] Wen T L , Nie H W, Wang S R. Proceedings International Hydrogen Energy Congress and Exhibition IHEC. Istanbul ,Turkey , 2005
[55] Shao Z P , Haile S M, Ahn J , et al . Nature , 2005 , 435 : 795 —798
[56] Horiuchi M, Suganuma S , Watanabe M. J . Electrochem. Soc. ,2004 , 151 : 1402 —1405
[57] Napporn T , Morin F , Meunier M. Electrochem. Solid2State Lett . , 2004 , 7(3) : 60 —70

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[3] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[4] 黄祺, 邢震宇. 锂硒电池研究进展[J]. 化学进展, 2022, 34(11): 2517-2539.
[5] 刘小琳, 杨西亚, 王海龙, 王康, 姜建壮. 用于可充电器件的有机电极材料[J]. 化学进展, 2021, 33(5): 818-837.
[6] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[7] 王金岭, 温玉真, 汪华林, 刘洪来, 杨雪晶. FeOCl层状材料及其插层化合物:结构、性质与应用[J]. 化学进展, 2021, 33(2): 263-280.
[8] 张一, 张萌, 佟一凡, 崔海霞, 胡攀登, 黄苇苇. 多羰基共价有机骨架在二次电池中的应用[J]. 化学进展, 2021, 33(11): 2024-2032.
[9] 吴贤文, 龙凤妮, 向延鸿, 蒋剑波, 伍建华, 熊利芝, 张桥保. 中性或弱酸性体系下锌基水系电池负极材料研究进展[J]. 化学进展, 2021, 33(11): 1983-2001.
[10] 章胜男, 韩东梅, 任山, 肖敏, 王拴紧, 孟跃中. 有机电极材料固定化策略[J]. 化学进展, 2020, 32(1): 103-118.
[11] 乔少明, 黄乃宝, 高正远, 周仕贤, 孙银. 超级电容器用镍锰基二元金属氧化物电极材料[J]. 化学进展, 2019, 31(8): 1177-1186.
[12] 赵云, 金玉红, 王莉, 田光宇, 何向明. 自组装多级结构在锂离子电池中的应用[J]. 化学进展, 2018, 30(11): 1761-1769.
[13] 朱永明, 姜云鹏, 胡会利*. 纳米NCS在电化学能量转换和储存中的制备和应用[J]. 化学进展, 2017, 29(11): 1422-1434.
[14] 张文锐, 张智慧, 高立国, 马廷丽. 双钙钛矿型电极材料在中低温固体氧化物燃料电池中的应用[J]. 化学进展, 2016, 28(6): 961-974.
[15] 史菁菁, 郭星, 陈人杰, 吴锋. 柔性电池的最新研究进展[J]. 化学进展, 2016, 28(4): 577-588.
阅读次数
全文


摘要

单室固体氧化物燃料电池*