English
新闻公告
More
化学进展 2006, Vol. 18 Issue (0708): 966-973 前一篇   后一篇

• 综述与评论 •

微流控层流技术的研究

冯颖;王敏*   

  1. 浙江大学化学系 微分析系统研究所 杭州 310028
  • 收稿日期:2005-08-01 修回日期:2005-11-01 出版日期:2006-08-24 发布日期:2006-08-24
  • 通讯作者: 王敏

Development of Multiphase Laminar Flow on Microfluidic Analysis

Ying Feng;Min Wang*   

  1. Institute of Microananlytical Systems, Department of Chemistry, Zhejiang University, Hangzhou 310028, China
  • Received:2005-08-01 Revised:2005-11-01 Online:2006-08-24 Published:2006-08-24
  • Contact: Min Wang
基于微型通道自身的层流特点而发展起来的多相层流技术,从最初的液-液微萃取开始,由于其结构加工简单,操作方便和分析功能强大,已逐渐发展成为一种加工分析方法,为微流控分析的研究应用打开了一个崭新的局面。本文概述了层流的基本原理,总结了近10年来在这方面的研究,包括层流界面间的分子扩散、转移现象和化学反应,以及层流刻蚀加工技术及其在制备纳米材料和在生命医学方面的应用。具体介绍了应用层流技术进行微芯片的加工制作,微型反应器的制备,离子、分子的分离分析,聚合物薄膜的形成和应用,微通道内的有机合成反应的控制,溶液的浓度梯度控制以及在免疫检测中的应用,对细胞、生物大分子的操作控制,以及对生物试剂的预处理分析等。
The phenomenon of laminar flow in micro-channel has drawn increasing attention since its first application for micro scale liquid-liquid extraction. Due to its simple fabrication process, easy and convenient handling, and powerful capability to pattern topographical structures on microchips, it has been developed into a fabrication and analysis method, opening up a new direction for microfluidic research. In this paper, the theory and recent development of multiphase laminar flow in microfluidics, particularly molecular diffusion, transfer and chemical reactions through the laminar flow interface, laminar flow etching for microchannels, and its applications in preparation of nano materials and bioanalysis are investigated and discussed. Examples are given, including fabrication of microfluidic chips with laminar flow, preparation of microreactors, separation and analysis of ions and molecules, formation and decoration of polymer membrane, organic synthesis in microchannels, control of solution concentrations for immunoassay, single cell analysis, micromolecule manipulation, and pretreatment of bioreagents.

中图分类号: 

()

[ 1 ] 方肇伦(Fang Z L) . 微流控分析芯片(Microfluidic Analytical Chips) . 北京: 科学出版社(Beijing : Science Press) , 2003. 11
[ 2 ] Giordano N , Cheng J T. J . Phys. Condensed Matters , 2001 , 13(15) : R271 —R295
[ 3 ] Tokeshi M, Minagawa T , Uchiyama K, Hibara A , Sato K,Hisamoto H , Kitamori T. Anal . Chem. , 2002 , 74 (7) : 1565 —1571
[ 4 ] Reyes D R , Iossifidis D , Auroux P A , Manz A. Anal . Chem. ,2002 , 74(12) : 2623 —2636
[ 5 ] Auroux P A , Iossifidis D , Reyes D R , Manz A. Anal . Chem. ,2002 , 74(12) : 2637 —2652
[ 6 ] Breadmore M C , Wolfe KA , Arcibal I G, Leung W K, Dickson D , Giordano B C , Power M E , Ferrance J P , Feldman S H ,Norris P M, Landers J P. Anal . Chem. , 2003 , 75 (8) : 1880 —1886
[ 7 ] Paegel B M, Yeung S H I , Mathies R A. Anal . Chem. , 2002 ,74(19) : 5092 —5098
[ 8 ] Khandurina J , McKnight T E , Jacobson S C , Waters L C , Foote R S , Ramsey J M. Anal . Chem. , 2000 , 72(13) : 2995 —3000
[ 9 ] Hühmer A F R , Landers J P. Anal . Chem. , 2000 , 72 (21) :5507 —5512
[10] Fujii T , Sando Y, Higashino K, Fujii T. Lab on a Chip , 2003 , 3(3) : 193 —197
[11] 蒋维钧(Jiang W J ) , 顾惠君( Gu H J ) . 化工原理(Theory of Chemical Engineering) . 北京: 清华大学出版社(Beijing :Tsinghua University Press) , 1998. 139
[12] Weigl B H , Bardell R L , Cabrera C R. Advanced Drug Delivery Reviews , 2003 , 55(3) : 349 —377
[13] Fuerstman MJ , Deschatelets P , Kane R , Schwartz A , Kenis P J A , Deutch J M, Whitesides G M. Langmuir , 2003 , 19 (11) :4714 —4722
[14] Kovacs G T A. Micromachined Transducer Sourcebook. Boston :McGraw-Hill , 1998
[15] Weigl B H , Yager P. Science , 1999 , 283 (5400) : 346 —352
[16] Kamholz A E , Weigl B H , Finlayson B A , Yager P. Anal .Chem. , 1999 , 71(23) : 5340 —5347
[17] Zhao B , Moore J S , Beebe J D. Science , 2001 , 291 (5506) :1023 —1026
[18] Brody J P , Yager P. Sens. Actuators A , 1997 , 58(1) : 13 —18
[19] Sato K, Tokeshi M, Sawada T , Kitamori T. Anal . Sci . , 2000 ,16(5) : 455 —456
[20] Hibara A , Tokeshi M, Uchiyama K, Hisamoto H , Kitamori T.Anal . Sci . , 2001 , 17(1) : 89 —93
[21] Schilling E A , Kamholz A E , Yager P. Anal . Chem. , 2002 , 74(8) : 1798 —1804
[22] Tokeshi M, Minagawa T , Kitamori T. J . Chromatogr. A , 2000 ,894(1/2) : 19 —23
[23] Minagawa T , Kitamori T , Tokeshi M. Lab on a Chip , 2001 , 1(1) : 72 —75
[24] Tokeshi M, Minagawa T , Uchiyama K. Micro Total Analysis Systems. Dordrecht : Kluwer Academic Publishers , 2001. 533
[25] Hisamoto H , Horiuchi T , Tokeshi M, Hibara A , Kitamori T.Anal . Chem. , 2001 , 73(6) : 1382 —1386
[26] Hisamoto H , Horiuchi T , Uchiyama K, Tokeshi M, Hibara A ,Kitamori T. Anal . Chem. , 2001 , 73(22) : 5551 —5556
[27] Surmeian M, Hibara A , Slyadnev M, Uchiyama K, Hisamoto H ,Kitamori T. Anal . Lett . , 2001 , 34(9) : 1421 —1429
[28] Zhang J , Su T , Lee H K. Anal . Chem. , 2005 , 77(7) : 1988 —1992
[29] Tokeshi M, Minagawa T , Kitamori T. Anal . Chem. , 2000 , 72(7) : 1711 —1714
[30] Zhao B , Viernes N O L , Moore J S , Beebe D J . J . Am. Chem.Soc. , 2002 , 124 (19) : 5284 —5285
[31] Hibara A , Nonaka M, Hisamoto H , Uchiyama K, Kikutani Y,Tokeshi M, Kitamori T. Anal . Chem. , 2002 , 74 (7) : 1724 —1728
[32] 方群(Fang Q) , 陈宏(Chen H) , 蔡增轩(Cai Z X) . 高等学校化学学报(Chemical Journal of Chinese Universities) , 2004 , 25 :261 —263
[33] 方群(Fang Q) , 陈宏(Chen H) . CN 03 142 29717 , 2003
[34] 方群(Fang Q) , 李丹妮(Li D N) . CN 03 114 73418 , 2003
[35] Kakuta M, Bessoth G F , Manz A. Chem. Record , 2001 , 1(5) :395 —405
[36] KamL , Boxer S G. Langmuir , 2003 , 19(5) : 1624 —1631
[37] Ismagilov R F , Stroock A D , Kenis PJ A , Whitesides GM, Stone H A. Appl . Phys. Lett . , 2000 , 76(17) : 2376 —2378
[38] Hibara A , Nonaka M, Tokeshi M, Kitamori T. J . Am. Chem.Soc. , 2003 , 125 (49) : 14954 —14955
[39] Woias P , Hauser K, Yacoub G E. Micro Total Analysis Systems 2000. Dordrecht : Kluwer Academic Publishers , 2000. 277
[40] Yasuda K. Sen. Actuators B , 2000 , 64(1/3) : 128 —135
[41] Yasuda K. Micro Total Analysis Systems 2000. Dordrecht : Kluwer Academic Publishers , 2000. 343
[42] Hosokawa K, Fujii T , Endo I. Anal . Chem. , 1999 , 71 (20) :4781 —4785
[43] Bessoth F G, de Mello AJ , Manz A. Anal . Commun. , 1999 , 36(4) : 213 —215
[44] Xu Y, Bessoth F G, Eijkel J C T , Manz A. Analyst , 2000 , 125(4) : 677 —683
[45] Mitchell M C , Spikmans V , de Mello A J . Analyst , 2001 , 126(1) : 24 —27
[46] Mitchell M C , Spikmans V , Manz A , de Mello A J . J . Chem.Soc. , Perkin Trans. 1 , 2001 , 1 (5) : 514 —518
[47] Salimi M H , Tang T , Harrison D J . J . Am. Chem. Soc. , 1997 ,119(31) : 8716 —8717
[48] Hisamoto H , Tokeshi M, Kitamori T. 14th International Symposium on Microscale Separation and Analysis Include Minisymposia on Genomics and Proteomics. Boston , 2001. 117
[49] Kitamori T , Hisamoto H , Yokeshi M. 14th International Symposium on Microscale Separation and Analysis Include Minisymposia on Genomics and Proteomics. Boston , 2001. 270
[50] Lêwe H , Ehrfeld W. Electrochim. Acta , 1999 , 44 ( 21/22) :3679 —3689
[51] Krummradt H , Koop U , Stoldt J . Microreaction Technology :Industrial Prospects. Berlin : Springer , 2000. 181
[52] Bayer T , Pysall D , Wachsen O. Microreaction Technology :Industrial Prospects. Berlin : Springer , 2000. 165
[53] J? hnisch K, Baerns M, Hessel V , Ehrfeld W, Haverkamp V ,Lowe H , Wille C , Guber A. J . Florine Chem. , 2000 , 105 (1) :117 —128
[54] Haverkamp V , Ehrfeld W, Gebauer K, Hessel V , Lowe H ,Richter T , Wille C. Fresenius J . Anal . Chem. , 1999 , 364 (7) :617 —624
[55] Franz A J , Jensen K F , Schmidt MA. Microreaction Technology :Industrial Prospects. Berlin : Springer , 2000. 267
[56] Jensen K F , Firebaugh S L , Franz A J . Micro Total Analysis Systems ’98. Dordrecht : Kluwer Academic Publishers , 1998. 463
[57] Jensen K F. Chem. Eng. Sci . , 2001 , 56(2) : 293 —303
[58] Metallo J S , Kane R S , Holmlin R E , Whitesides GM. J . Am.Chem. Soc. , 2003 , 125 (15) : 4534 —4540
[59] Song H , Tice J D , Ismagilov R F. Angew. Chem. Int . Ed. ,2003 , 42(7) : 768 —772
[60] Hisamoto H , Shimizu Y, Uchiyama K, Tokeshi M, Kikutani Y,Hibara A , Kitamori T. Anal . Chem. , 2003 , 75(2) : 350 —354
[61] Peterson D S , Rohr T , Svec F , Fréchet J M J . Anal . Chem. ,2002 , 74(16) : 4081 —4088
[62] Tanaka Y, Slyadnev M N , Sato K, Tokeshi M, Kim H B ,Kitamori T. Anal . Sci . , 2001 , 17(7) : 809 —810
[63] Kenis P J A , Ismagilov R F , Whitesides G M. Science , 1999 ,285(5424) : 83 —85
[64] Ma Y, Tong W, Zhou H , Suib S L. Microporous Mesoporous Mater. , 2000 , 37(1/2) : 243 —252
[65] Wan Y S S , Chau J L H , Gavriilidis A , Yeung KL. Microporous Mesoporous Mater. , 2001 , 42(2/3) : 157 —175
[66] Rebrov E V , Seijger G B F , Calis H P A , de Croon M H J M,van den Bleek C M, Schouten J C. Appl . Catal . A , 2001 , 206(1) : 125 —143
[67] Drott J , Rosengren L , Lindstrom K, Laurell T. Mikrochim. Acta ,1999 , 131 (1/2) : 115 —120
[68] Jones F , Lu Z H , Elm B B. Appl . Biochem. Biotech. , 2002 ,98 : 627 —640
[69] Ehrfeld W, Hessel V. Microreactors. Weinheim: Wiley-VCH Press , 2000. 115 —130
[70] Mitrinovic D M, Zhang Z J , Williams S M, Huang Z Q ,Schlossman ML. J . Phys. Chem. B , 1999 , 103 (11) : 1779 —1782
[71] Fernandes P A , Natália M, Cordeiro D S , Gomes J A N F. J .Phys. Chem. B , 2001 , 105 (5) : 981 —993
[72] Kluson P , Kacer P , Cajthaml T , Kalaji M. J . Mater. Chem. ,2001 , 11(2) : 644 —651
[73] Wang H Z , Nakamura H , Uehara M, Miyazaki M, Maeda H.Chem. Comm. , 2002 , 1462 —1463
[74] Miyazaki M, Kaneno J , Uehara M, Fujii M, Shinizu H , Maeda H. Chem. Comm. , 2003 , 648 —649
[75] Thiébaud P , Lauer L , Knoll W, Offenh? usser A. Biosens.Bioelectronics , 2002 , 17(1/2) : 87 —93
[76] Chen C , Hirdes D , Folch A. Proceedings of the National Academy of Sciences of USA , 2003 , 100 (4) : 1499 —1504
[77] Wu H K, Odom T W, Whitesides G M. Anal . Chem. , 2002 , 74(14) : 3267 —3273
[78] Wu M H , Park C , Whitesides G M. Langmuir , 2002 , 18 (24) :9312 —9318
[79] Oakey J , Allely J , Marr W M D , et al . Biotechnol . Prog. ,2002 , 18(6) : 1439 —1442
[80] Lagally E T , Scherer J R , Blazej R G, Toriello N M, Diep B A ,Ramchandani M, Sensabaugh G F , Riley L W, Mathies R A.Anal . Chem. , 2004 , 76(11) : 3162 —3170
[81] Pennemann H , Watts P , Haswell S J , Hesell V , Lowe H. Org.Process Res. Dev. , 2004 , 8(3) : 422 —439
[82] Kaji N , Tezuka Y, Takamura Y, Ueda M, Nishimoto T ,Nakanishi H , Horiike Y, Baba Y. Anal . Chem. , 2004 , 76(1) :15 —22
[83] Huang M F , Kuo Y C , Huang C C , Chang H T. Anal . Chem. ,2004 , 76(1) : 192 —196
[84] Sanders J C , Breadmore M C , Kwok Y C , Horsman K M, Landers J P. Anal . Chem. , 2003 , 75(4) : 986 —994
[85] Takayama S , Ostuni E , Qian X P , McDonald J C , Jiang X Y,LeDuc P , Wu M H , Ingber D E , Whitesides G M. Adv. Mater ,2001 , 13(8) : 570 —574
[86] Vilkner T , Janasek D , Manz A. Anal . Chem. , 2004 , 76 (12) :3373 —3386
[87] Weigl B H , Bardell R L , Kesler N , Morris C J . Fresenius J .Anal . Chem. , 2001 , 371 (2) : 97 —105
[88] Chován T , Guttman A. Trends in Biotech. , 2002 , 20(3) : 116 —122
[89] Kim Y C , Ro K W. Micro Total Analysis Systems 2001.Dordrecht : Kluwer Academic Publishers , 2001. 123
[90] Cho B S , Schuster T G, Zhu X Y, Chang D , Smith G D ,Takayama S. Anal . Chem. , 2003 , 75(7) : 1671 —1675
[91] Jandik P , Weigl B , Kessler N. J . Chromatogr. A , 2002 , 954 :33 —40
[92] Jiang X Y, Ng J M K, Stroock A D , Dertinger S K W, Whitesides GM. J . Am. Chem. Soc. , 2003 , 125 (18) : 5294 —9295
[93] Weibel D B , Kruithof M, Potenta S , Sia S K, Lee A , Whitesides GM. Anal . Chem. , 2005 , 77(15) : 4726 —4733
[94] Holden M A , Kumar S , Castellana E T , Beskok A , Cremer P S.Sens. Actuators B , 2003 , 92(1P2) : 199 —207
[95] Takayama S , Ostuni E , LeDuc P , Naruse K, Ingber D E ,Whitesides GM. Chem. Bio. , 2003 , 10(2) : 123 —130
[96] Yang M S , Li C W, Yang Y, et al . Anal . Chem. , 2002 , 74(16) : 3991 —4001
[97] Yamada M, Kasim V , Nakashima M, Edahiro J , Seki M.Biotech. Bioengineering , 2004 , 88(4) : 489 —494
[98] Du W B , Fang Q , He Q H , Fang Z L. Anal . Chem. , 2005 , 77(5) : 1330 —1337

[1] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[2] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[3] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[4] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[5] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[6] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[7] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.
[8] 何天稀, 梁琼麟, 王九, 罗国安. 脂质体类药物载体的微流控制备[J]. 化学进展, 2018, 30(11): 1734-1748.
[9] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[10] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[11] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[12] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.
[13] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.
[14] 唐文来, 项楠, 黄笛, 张鑫杰, 顾兴中, 倪中华. 基于微流控技术的单细胞生物物理特性表征[J]. 化学进展, 2014, 26(06): 1050-1064.
[15] 蒋艳, 马翠翠, 胡贤巧, 何巧红. 微流控纸芯片的加工技术及其应用[J]. 化学进展, 2014, 26(01): 167-177.
阅读次数
全文


摘要

微流控层流技术的研究