English
新闻公告
More
化学进展 2006, Vol. 18 Issue (05): 680-686 前一篇   

• 专题论坛 •

微孔和介孔材料中的热化学

李庆华 王景伟 袁昊 解丽丽 王立军 Alexandra Navrotsky   

  1. 上海第二工业大学环境工程系 上海第二工业大学环境工程系 上海第二工业大学环境工程系 美国加州大学戴维斯分校热化学研究室
  • 收稿日期:2006-01-01 修回日期:1900-01-01 出版日期:2006-01-01 发布日期:2006-01-01

Thermochemistry of Microporous and Mesoporous Materials

Qinghua Li Jingwei Wang Hao Yuan Lili Xie Lijun Wang Alexandra Navrotsky   

  1. Department of Environmental Engineering, Shanghai Second Polytechnic University Department of Environmental Engineering, Shanghai Second Polytechnic University Department of Environmental Engineering, Shanghai Second Polytechnic University Thermochemistry Facility and NEAT ORU, University of California at Davis
  • Received:2006-01-01 Revised:1900-01-01 Online:2006-01-01 Published:2006-01-01
这篇论文综述了美国加州大学戴维斯分校科学院院士Navrotsky课题组多年来在多孔材料上取得的一系列热化学研究结果。讨论了热化学对微孔、介孔材料的结构稳定性和合成过程的影响。借助多种测热手段对影响骨架结构的热焓、热熵和自由能进行了系统的测量和计算。研究数据表明一系列纯硅分子筛、介孔材料和磷酸铝多孔材料同相应的石英相和块磷铝矿相相比能量上最多只高出15 kJ·mol-1。一系列纯硅分子筛的熵值比石英相高出3.2—4.2 J·K-1·mol-1;在0—12.6 J·K-1·mol-1范围内相对应的自由能几乎没有差别。因此,对不同微孔、介孔材料,其骨架结构在能量上是几乎没有区别的。另外,本文通过介绍一种新型测热方法——原位测热,揭示了分子筛合成过程中的动力学和成核/结晶机理。
The paper reviews thermochemistry contribution to the stability of frameworks and synthetic progress in microporous and mesoporous materials. Knowledge of enthalpies, entropies and free energies of formation on the framework structure in micorporous and mesoporous materials is systematically summarized via several calorimetric measurements. It is found that a series of pure-silica, mesoporous silicas and AlPO4 polymorphs are energetically, at most, 15 kJ·mol-1 higher than quartz and berlinite, and the entropies of a series of pure silica zeolites span a very narrow range at 3.2—4.2 J·K-1·mol-1 above quartz. Therefore, the Gibbs free energy of transformation calculated for several SiO2 phases have nearly the same ΔG298tran as the values range from 0 to 12.6 J·K-1·mol-1 with respect to quartz. Thus, there is very little energetic limitation to the possibility of synthesizing various micro- and mesoporous framework structures. In addition, a new calorimetric method, in situ calorimetry, is introduced to reveal the kinetics and nucleation/crystallization in the process of the zeolite synthesis.

中图分类号: 

()

[ 1 ] Szostak R. Handbook of Molecular Sieves. New York : Van Nostrand Reinhold , 1992
[ 2 ] Breck D W. Zeolite Molecular Sieves. New York : John Wiley ,1974
[ 3 ] Jentys A , Catlow C R A. Catal . Lett . , 1993 , 22 : 251 —259
[ 4 ] Fritsch S , Navrotsky A. J . Am. Ceram. Soc. , 1996 , 79 :1761 —1768
[ 5 ] Kresge C T , Leonowicz M E , Roth WJ , Vartuli J C , Beck J S.Nature , 1992 , 359 : 710 —713
[ 6 ] Huo Q S , Margolese D I , Clesia U , Feng P Y, Gier T E , Sieger P , Leon R , Petroff P M, Schuth F , Stucky GD. Nature , 1994 ,368 : 317 —319
[ 7 ] Davis M E. Microporous Mesoporous Mater. , 1998 , 21 : 173 —182
[ 8 ] Burkett S L , Davis M E. J . Phys. Chem. , 1994 , 98 : 4647 —4655
[ 9 ] Ozin GA. Adv. Mater. , 1992 , 613 —617
[10] Davis M E , Lobo P F. Chem. Mater. , 1992 , 4 : 756 —763
[11] Lin I C , Navrotsky A , Ballato J , Riman R. J . Non-Crystalline Solids , 1997 , 215 : 113 —121
[12] Petrovic I , Navrotsky A. Microporous Materials , 1997 , 9 : 1 —12
[13] Shim S H , Navrotsky A , Gaffney T R , McDougall J . Am.Miner. , 1999 , 84 : 1870 —1881
[14] Yang S , Navrotsky A. Microporous Mesoporous Mater. , 2000 ,37 : 175 —186
[15] Yang S Y, Navrotsky A , Phillips B. J . Phys. Chem. B , 2000 ,104 : 6071 —6080
[16] Piccione P M, Woodfield B , Boerio2Goates J , Navrotsky A , Davis M E. J . Phys. Chem. B , 2001 , 105 : 6025 —6030
[17] Gross A F , Yang S Y, Navrotsky A , Tolbert S H. J . Phys.Chem. B , 2003 , 107 : 2709 —2718
[18] Yang S Y, Navrotsky A , Wesdowski D J , et al . Chem. Mater. ,2004 , 16 : 210 —219
[19] Yang S Y, Navrotsky A. Micro. Meso. Mater. , 2002 , 52 : 93 —103
[20] Yang S Y, Navrotsky A. Chem. Mater. , 2004 , 16 : 3682 —3687
[21] Li Q H , Navrotsky A , Rey F , Corma A. Microporous Mesoporous Mater. , 2003 , 59 : 127 —133
[22] Petrovic I , Navrotsky A , Davis M E , Zones S I. Chem. Mater. ,1993 , 5 : 1805 —1813
[23] Piccione P M, Laberty C , Yang S Y, Camblor M A , Navrotsky A , Davis M E. J . Phys. Chem. B , 2000 , 104 : 10001 —10011
[24] Maniar P D , Navrotsky A , Rabinovich E M, Ying J Y, Benier J B. J . Noncrystallogr. Solids , 1990 , 124 : 101 —111
[25] Ying J Y, Benziger J B , Navrotsky A. J . Am. Ceram. Soc. ,1993 , 76 : 2571 —2583
[26] Moloy E C , Davila L P , Shackelford J F , Navrotsky A.Microporous Mesoporous Mater. , 2002 , 54 : 1 —13
[27] Li Q H , Yang S Y, Navrotsky A. Microporous Mesoporous Mater. , 2003 , 65 : 137 —143
[28] Hu Y T , Navrotsky A , Chen C Y. Chem. Mater. , 1995 , 7 :1816 —1823
[29] Navrotsky A , Petrovic I , Hu Y T , Chen C , Davis M E.Microporous Mater. , 1995 , 4 : 95 —98
[30] Boerio-Goates J , Stevens R , Hom B K, Woodfield B F , Piccione P M, Davis M E , Navrotsky A. J . Chem. Thermo. , 2002 , 34(2) : 205 —227
[31] La Iglesia A , Aznar A J . Zeolites , 1986 , 6 : 26 —32
[32] Johnson G K, Tasker I R , Howell D A , Smith J V. J . Chem.Thermodyn. , 1987 , 19 : 617 —623
[33] Patarin J , Soulard M, Kessler H , Guth J L , Dito M.Thermochim. Acta , 1989 , 146 : 21 —27

[1] 陈淏川, 付浩浩, 邵学广, 蔡文生. 重要性采样方法与自由能计算[J]. 化学进展, 2018, 30(7): 921-931.
[2] 侯琳刚, 马利利, 周亦晨, 赵彧, 张毅, 何金梅*. 低表面能化合物在超浸润材料中的应用[J]. 化学进展, 2018, 30(12): 1887-1898.
[3] 王腾 蔡文生 邵学广. 环糊精的理论计算*[J]. 化学进展, 2010, 22(05): 803-811.
[4] 谭志诚,邸友莹. 近代低温绝热量热学的研究现状及发展前景[J]. 化学进展, 2006, 18(09): 1234-1252.
[5] 侯廷军,徐筱杰. 基于分子动力学模拟和连续介质模型的自由能计算方法*[J]. 化学进展, 2004, 16(02): 153-.
[6]

谷国团,张治军,党鸿辛,

. 低自由能固体表面的制备及其应用*[J]. 化学进展, 2002, 14(03): 158-.
[7] 沈俭一. 吸附量热技术和多相催化微观动力学[J]. 化学进展, 1997, 9(04): 371-.
阅读次数
全文


摘要

微孔和介孔材料中的热化学