English
新闻公告
More
化学进展 2005, Vol. 17 Issue (05): 924-930 前一篇   后一篇

• 综述与评论 •

有机介质中酶催化的基本原理

杨缜*   

  1. 深圳大学生命科学学院 深圳 518060
  • 收稿日期:2004-07-01 修回日期:2004-11-01 出版日期:2005-09-24 发布日期:2005-09-24
  • 通讯作者: 杨缜

Fundamentals of Biocatalysis in Organic Solvents

Yang Zhen*   

  1. College of Life Science, Shenzhen University,Shenzhen 518060,China
  • Received:2004-07-01 Revised:2004-11-01 Online:2005-09-24 Published:2005-09-24
  • Contact: Yang Zhen
酶在有机溶剂中催化作用的研究日益受到重视,其应用范围也越来越广.本文就有机介质中酶催化的基本原理进行了讨论,包括酶的结构和催化机理,以及溶剂和水对酶的结构和催化功能的影响.同时,本文归纳出提高酶活性的一系列方法,其中不少方法简便易行,能使酶活性提高102-105倍.
Nonaqueous enzymology has attracted more and more interests from researchers and industry because of the unique properties provided by enzymes in nonaqueous environments. Supported by an exponential growth of the literature, this rapidly developing research area has made tremendous progress in recent years in gaining an improved fundamental understanding of enzyme function and activation in organic media. In such a non-conventional milieu, the enzyme maintains its structural and mechanistic integrity. The role of water and solvents on enzyme function has been discussed in detail, such as the effects of water on enzyme activity and protein mobility, the effects of solvent on the water associated with the enzyme, on enzyme s active site and protein dynamics and conformation, on substrates and products, and on the enzymatic activation energy. A series of methods and techniques for activating enzymes in organic solvents have been summarized, such as to overcome the limitations in diffusion and accessibility, to optimize the pH situation, to minimize the effect of solvents on activation energy, to enhance the conformational mobility of the enzyme, and to prevent enzyme denaturation during dehydration by lyophilizing enzymes in the presence of a selection of organic or inorganic excipients (e.g. nonbuffer salts or macrocycles) . These techniques are quite simple and scalable, and can promote a wide range of enzyme activation (up to 105-fold) through different mechanisms. All these will undoubtedly help us to effectively design high-activity enzyme preparations suitable for use in organic solvents and to broaden the applications of nonaqueous enzymology to a greater extent.

中图分类号: 

()

[ 1 ] Klibanov A M1 Nature , 2001 , 409 : 241 —246
[ 2 ] Lee M Y, Dordick J S. Curr. Opin. Biotechnol . , 2002 , 13 :376 —384
[ 3 ] Khmelnitsky Y L , Rich J O. Curr. Opin. Chem. Biol . , 1999 ,3 : 47 —53
[ 4 ] Yang Z , Russell A J . Enzymatic Reactions in Organic Media (eds. Koskinen A M P , Klibanov A M) . Blackie Academic & Professional , 1996. 43 —69
[ 5 ] Fitzpatrick P A , Steinmetz A C U , Ringe D , et al . Proc. Natl .Acad. Sci . USA , 1993 , 90 : 8653 —8657
[ 6 ] Schmitke J L , Stern L J , Klibanov A M. Proc. Natl . Acad. Sci .USA , 1997 , 94 : 4250 —4255
[ 7 ] Yennawar H P , Yennawar N H , Farber G K. Biochemistry ,1994 , 33 : 7326 —7336
[ 8 ] Allen K N , Bellamacina C R , Ding X, et al . J . Phys. Chem. ,1996 , 100 : 2605 —2611
[ 9 ] Wang Z , Zhu G, Huang Q , et al . Biochim. Biophys. Acta ,1998 , 1384 : 335 —344
[10] Griebenow K, Klibanov A M. Biotechnol . Bioeng. , 1997 , 53 :351 —362
[11] Fersht A. Enzyme Structure and Mechanism, 2nd ed. W. H.Freeman and Company , 1985. 27 —28
[12] Kim J , Clark D S , Dordick J S. Biotechnol . Bioeng. , 2000 , 67 :112 —116
[13] Schmitke J L , Stern L J , Klibanov A M. Proc. Natl . Acad. Sci .USA , 1998 , 95 : 12918 —12923
[14] Affleck R , Xu Z F , Suzawa V , et al . Proc. Natl . Acad. Sci .USA , 1992 , 89 : 1100 —1104
[15] Xu Z F , Affleck R , Wangikar P , et al . Biotechnol . Bioeng. ,1994 , 43 : 515 —520
[16] Zaks A , Klibanov A M. J . Biol . Chem. , 1988 , 263 : 8017 —8021
[17] Bone S , Pethig R. J . Mol . Biol . , 1985 , 181 : 323 —326
[18] Partridge J , Dennison P R , Moore M D , et al . Biochim.Biophys. Acta , 1998 , 1386 : 79 —89
[19] Volkin D B , Staubli A , Langer R , et al . Biotechnol . Bioeng. ,1991 , 37 : 843 —853
[20] Liu W R , Langer R L , Klibanov A M. Biotechnol . Bioeng. ,1991 , 37 : 177 —184
[21] Halling P J . Trends Biotechnol . , 1989 , 7 : 50 —51
[22] Halling P J . Enzyme Microb. Technol . , 1994 , 16 : 178 —206
[23] Valivety R H , Halling P J , Macrae A R. Biochim. Biophys.Acta , 1992 , 1118 : 218 —222
[24] Bell G, Janssen A E M, Halling P J . Enzyme Microb. Technol . ,1997 , 20 : 471 —477
[25] Yang Z , Robb D A. Biotechnol . Bioeng. , 1994 , 43 : 365 —370
[26] Fontes N , Harper N , Halling P J , et al . Biotechnol . Bioeng. ,2004 , 82 : 802 —808
[27] Yang Z , Robb D A. Biochem. Soc. Trans. , 1991 , 20 : 13S
[28] Valivety R H , Halling P J , Macrae A R. FEBS Lett . , 1992 ,301 : 258 —260
[29] Valivety R H , Halling P J , Peilow A D , et al . Biochim.Biophys. Acta , 1992 , 1122 : 143 —146
[30] Secundo F , Carrea G. Chem. Eur. J . , 2003 , 9 : 3194 —3199
[31] Yang Z , Zacherl D , Russell A J . J . Am. Chem. Soc. , 1993 ,115 : 12251 —12257
[32] Zaks A , Klibanov A M. J . Biol . Chem. , 1988 , 263 : 3194 —3201
[33] Gorman L A S , Dordick J S. Biotechnol . Bioeng. , 1992 , 39 :392 —397
[34] Khmelnitsky Y L , Belova A B , Levashov A V , et al . FEBS Lett . , 1991 , 284 : 267 —269
[35] Knubovets T , Osterhout J J , Klibanov A M. Biotechnol . Bioeng. ,1999 , 63 : 242 —248
[36] Babu K R , Moradian A , Doublas D J . J . Am. Soc. Mass Spectrom. , 2001 , 12 : 317 —328
[37] Ryu K, Dordick J S. Biochemistry , 1992 , 31 : 2588 —2598
[38] Guo Y, Clark D S. Biochim. Biophys. Acta , 2001 , 1546 : 406 —411
[39] Klibanov A M. Trends Biotechnol . , 1997 , 15 : 97 —101
[40] Burke P A , Griffin R G, Klibanov A M. Biotechnol . Bioeng. ,1993 , 42 : 87 —94
[41] Hartsough D S , Merz K M. J . Am. Chem. Soc. , 1992 , 114 :10113 —10116
[42] Burke P A , Griffin R G, Klibanov A M. J . Biol . Chem. , 1992 ,267 : 20057 —20064
[43] Kascher V , Michaelis G, Galunsky B. Biotechnol . Lett . , 1991 ,13 : 75 —80
[44] Yang Z , Robb D A. Enzyme Microb. Technol . , 1993 , 15 :1030 —1036
[45] Wangikar P P , Graykar T P , Estell D A , et al . J . Am. Chem.Soc. , 1993 , 115 : 12231 —12237
[46] Zacharis E , Halling P J , Rees D G. Proc. Natl . Acad. Sci .USA , 1999 , 96 : 1201 —1205
[47] Blackwood A D , Curran L J , Moore B D , et al . Biochim.Biophys. Acta , 1994 , 1206 : 161 —165
[48] Griebenow K, Klibanov A M. Proc. Natl . Acad. Sci . USA ,1995 , 92 : 10969 —10976
[49] Dai L , Klibanov A M. Proc. Natl . Acad. Sci . USA , 1999 , 96 :9475 —9478
[50] Ru M T , Dordick J S , Reimer J A , et al . Biotechnol . Bioeng. ,1999 , 63 : 233 —241
[51] Van Unen D J , Engbersen J F J , Reinhoudt D N. Biotechnol .Bioeng. , 1998 , 59 : 553 —556
[52] Montanez-Clemente I , Alvira E , Macias M, et al . Biotechnol .Bioeng. , 2002 , 78 : 53 —59
[53] Noda S , Kamiya N , Goto M, et al . Biotechnol . Lett . , 1997 , 19 :307 —309
[54] 高修功(Gao X G) , 曹淑桂(Cao S G) , 章克昌(Zhang K C) .生物化学与生物物理学报(Acta Biochimica et Biophysica Sinica) , 1997 , 29 (4) : 337 —342
[55] 蒋太高(Jiang T G) , 吉鑫松(Ji X S) , 黄鹤(Huang H) , 袁中一(Yuan Z Y) . 生物化学与生物物理学报(Acta Biochimica et Biophysica Sinica) , 1998 , 30 (6) : 644 —647
[56] 沈鸿雁(Shen H Y) , 田桂玲(Tian G L) , 闫爱新( Yan A X)等. 化学学报(Acta Chimica Sinica) , 2003 , 61 (7) : 1144 —1148
[57] 王智(Wang Z) , 苟小军(Gou X J ) , 于大海( Yu D H) 等. 吉林大学学报( 理学版) (Journal of Jilin University ( Science Ed. ) ) , 2004 , 42 (1) : 126 —129

[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[3] 葛明, 胡征, 贺全宝. 基于尖晶石型铁氧体的高级氧化技术在有机废水处理中的应用[J]. 化学进展, 2021, 33(9): 1648-1664.
[4] 苏原, 吉可明, 荀家瑶, 赵亮, 张侃, 刘平. 甲醛氧化催化剂及反应机理[J]. 化学进展, 2021, 33(9): 1560-1570.
[5] 郭芬岈, 李宏伟, 周孟哲, 徐正其, 郑岳青, 黎挺挺. 基于非贵金属催化剂常温常压电化学合成氨[J]. 化学进展, 2020, 32(1): 33-45.
[6] 吴正颖, 刘谢, 刘劲松, 刘守清, 查振龙, 陈志刚. 二硫化钼基复合材料的合成及光催化降解与产氢特性[J]. 化学进展, 2019, 31(8): 1086-1102.
[7] 赵文军, 秦疆洲, 尹志凡, 胡霞, 刘宝军. 新型2D MXenes 纳米材料在光催化领域的应用[J]. 化学进展, 2019, 31(12): 1729-1736.
[8] 吕记巍, 敖先权*, 陈前林, 谢燕, 曹阳, 张纪芳. 煤气化可弃型催化剂[J]. 化学进展, 2018, 30(9): 1455-1462.
[9] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[10] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[11] 解英娟, 吴志娇, 张晓, 马佩军, 朴玲钰. 混晶TiO2光催化剂的制备及机理研究[J]. 化学进展, 2014, 26(07): 1120-1131.
[12] 张骞, 周莹, 张钊, 何云, 陈永东, 林元华. 表面等离子体光催化材料[J]. 化学进展, 2013, 25(12): 2020-2027.
[13] 杨旸 郑雯 程党国 陈丰秋 詹晓力. 原位FT-IR技术在研究甲烷氧化反应中的应用*[J]. 化学进展, 2009, 21(10): 2205-2211.
[14] 张君涛,张国利,冯霄. 乙烯齐聚制α-烯烃镍系催化剂[J]. 化学进展, 2008, 20(0708): 1032-1036.
[15] 杨小超,钱俊臻,万巧玲,莫志宏. 金纳米团簇功能化及其在生物医学中的应用[J]. 化学进展, 2007, 19(05): 689-694.
阅读次数
全文


摘要

有机介质中酶催化的基本原理