English
新闻公告
More
化学进展 2005, Vol. 17 Issue (04): 660-665 前一篇   后一篇

• 综述与评论 •

纳米碳管储能的化学原理与储存容量研究*

周理1**;孙艳1;苏伟1;周亚平2   

  1. 1.天津大学化工学院 高压吸附实验室 天津 300072;

    2.天津大学理学院化学系 天津 300072

  • 收稿日期:2004-05-01 修回日期:2004-06-01 出版日期:2005-07-24 发布日期:2005-07-24
  • 通讯作者: 周理

Studies on the Chemical Principle and Capacity of Carbon Nanotubes as Energy Storage Materials

Zhou Li1**;Sun Yan1;Su Wei1;Zhou Yaping2   

  1. 1.High Pressure Adsorption Laboratory, School of Chemical Engineering and Technology, Tianjin University,Tianjin 300072,China;

    2.Department of Chemistry, School of Science, Tianjin University,Tianjin 300072,China

  • Received:2004-05-01 Revised:2004-06-01 Online:2005-07-24 Published:2005-07-24
  • Contact: Zhou Li
通过在大温度、压力范围内系统地测定氢在纳米碳管粉末与压片上的吸附等温线和对所得等温线的理论分析,计算出吸附热,并用超临界气体的吸附模型充分地描述了氢在纳米碳管上的吸附行为,证明纳米碳管储氢的原理是超临界吸附;比表面积和储气温度控制着储气容量.甲烷在干纳米碳管上的吸附机理与氢气相同,但在湿纳米碳管中的存储机理在于甲烷水合物的生成,因此孔容控制储气容量.单位质量多壁管的湿储容量是干储容量的5.1倍 ,单壁管可能产生更大的增强存储作用.
The chemical principle of hydrogen uptake by carbon nanotubes was proven to be the physisorption of supercritical gases. This conclusion was reached based on the value of the adsorption heat evaluated from a set of adsorption isotherms for a wide range of temperature and pressure as well as the fitness of the model for supercritical adsorption with the experimental isotherms. The specific surface area of the nanotubes and the temperature of storage control the capacity. The adsorption of methane on dry carbon nanotubes behaves the same way as the adsorption of hydrogen . However, the storage of methane in wet carbon nanotubes is based on the formation of methane hydrate and the size of pore volume controls the storage capacity. The storage capacity in wet multiwalled carbon nanotubes is 5.1 times higher than in dry nanotubes, and the single wall carbon nanotubes might be the best carrier of methane.

中图分类号: 

()

[ 1 ] Züttel A. Proceedings of the Hypothesis Ⅴ. Porto Conte , Italy ,2003
[ 2 ] Dillion A C , Jones K M, Bekkedahl T A , et al . Nature , 1997 ,386 : 377 —379
[ 3 ] Hirscher M, Becher M, Haluska M, et al . Applied Physics A ,2001 , 72 (2) : 129 —132
[ 4 ] Chambers A , Park C , Terry R , et al . J . Phy. Chem. B , 1998 ,102 (22) : 4254 —4256
[ 5 ] Ahn C C , Ye Y, Ratnakumar B V C , et al . Applied Physics Letters , 1998 , 73 (23) : 3378 —3380
[ 6 ] Liu C , Fan Y Y, Liu M, et al . Science , 1999 , 286 : 1127 —1129
[ 7 ] Fan Y Y, Liao B , Liu M, et al . Carbon , 1999 , 37 : 1649 —1652
[ 8 ] 范月英(Fan Y Y) , 刘敏(Liu M) , 成会明(Cheng H M) . 第四届全国新型炭材料学术研讨会议论文集( Proceedings of 4th National Symposium on Novel Carbon Materials ) . 1999 ,582 —587
[ 9 ] 毛宗强(Mao Z Q) , 徐才录(Xu C L) , 阎军( Yan J ) 等. 新型碳材料(Novel Carbon Materials) , 2000 , 15 (1) : 64 —67
[10] Chen P , Wu X, Lin J , et al . Science , 1999 , 285 : 91 —93
[11] Ye Y, Ahn C C , Witham C , et al . Appl . Phys. Letters , 1999 ,74 : 2307 —2309
[12] Wu X B , Chen P , Lin J , et al . Int . J . Hydrogen Energy , 2000 ,25 : 261 —265
[13] Cheng H M, Liu C , Fan Y Y, et al . Z. Mrtallkd , 2000 , 91(4) : 306 —310
[14] Li X S , Zhu H W, Ci L J , et al . Carbon , 2001 , 39 : 2077 —2088
[15] Li X S , Zhu H W, Mao Z Q , et al . Chinese Science Bulletin ,2001 , 46 (16) : 1358 —1360
[16] Poirier E , Chahine R , Bose T K. Int . J . Hydrogen Energy ,2001 , 26 : 831 —835
[17] Zhu H W, Chen A , Mao Z Q , et al . J . Mater. Sci . Lett . ,2002 , 19 : 1237 —1239
[18] Huang W Z , Zhang X B , Tu J P , et al . Mater. Chem. &Phys. ,2002 , 78 : 144 —148
[19] Züttel A , Sudan P , Mauron P , et al . Int . J . Hydrogen Energy ,2002 , 27 : 203 —212
[20] Bhabendra K, Pradhan G U , Sumanasrkera K W A , et al .Physica B , 2002 , 323 : 115 —121
[21] Wang Q K, Zhu C C , Liu W H , et al . Int . J . Hydrogen Energy ,2002 , 27 : 497 —500
[22] Hirscher M, Becher M, Haluska M, et al . J . Alloys Comp. ,2002 , 330/332 : 654 —658
[23] Pradhan B K, Harutyunyan A , Stojkovic D , et al . Materials Research Society Symp. Proc. , 2002 , 706 : Z10. 3. 1 —Z10. 3. 6
[24] Züttel A , Nützenadel C , Sudan P , et al . J . Alloys Comp. ,2002 , 330/332 : 676 —682
[25] Smith M R , Bittner E W, Bockrath B C. Preprints of Symposia , American Chemical Society , Division of Fuel Chemistry , 2002 , 47 (2) : 784 —785
[26] Lupu D , Biris A R , Misan I , et al . Particulate Science and Technology , 2002 , 20 (3) : 225 —234
[27] Gabis I E , Evard E A , Gordeev S K, et al . NATO Science Series II : Mathematics , Physics and Chemistry , 71 (Hydrogen Materials Science and Chemistry of Metal Hydrides ) . Kluwer Academic Publishers , 2002. 383 —390
[28] Pradhan B K, Harutyunyan A R , Eklund P C. Preprints of Symposia , American Chemical Society , Division of Fuel Chemistry , 2002 , 47 (2) : 477 —480
[29] Tang C C , Bando Y, Ding X X, et al . J . Am. Chem. Soc. ,2002 , 124 (49) : 14550 —14551
[30] Zhu H W, Li X S , Ci L J , et al . Mater. Chem. &Phys. , 2003 ,78 : 670 —675
[31] Kajiura H , Tsutsui S , Kadono K, et al . Applied Physics Letter ,2003 , 82 (7) : 1105 —1107
[32] Lueking A , Yang R T. AIChE Journal , 2003 , 49 (6) : 1556 —1568
[33] Gao H , Wu X B , Li J T , et al . Applied Physics Letter , 2003 , 83(16) : 3389 —3391
[34] Hanada K, Shiono H , Matsuzaki K. Diamond and Related Materials , 2003 , 12 : 874 —877
[35] Hou P X, Xu S T , Ying Z , et al . Carbon , 2003 , 41 : 2471 —2476
[36] Shaijumon M M, Ramaprabhu S. Chemical Physics Letters , 2003 ,374 : 513 —520
[37] Tibbetts G G, Meisner C P , Olk C H. Carbon , 2001 , 39 :2291 —2301
[38] Shiraishi M, Takenobu T , Ata M. Chemical Physics Letters ,2003 , 367 : 633 —636
[39] Loutfy R O , Moravsky A , Franco A , et al . Perspectives of Fullerene Nanotechnology ( ed. Osawa E) . Dordrecht : Klu-wer Academic Publishers , 2002. 327 —339
[40] Ritschel M, Uhlemann M, Gutfleisch O , et al . Applied Physics Letters , 2002 , 80 (16) : 2985 —2987
[41] Zhou Y P , Feng K, Sun Y, et al . Chem. Phys. Lett . , 2003 ,380(5/6) : 526 —529
[42] Leung W B , March N H , Motz H. Physics Letters A , 1976 , 56(6) : 425 —426
[43] Zhou L , Zhou Y P , Sun Y. Int . J . Hydrogen Energy , 2004 , 29(5) : 475 —479
[44] 周理(Zhou L) , 周亚平(Zhou Y P) . 中国科学B (Science in China B) , 1996 , 26 (5) : 473 —480
[45] Ruthven D M. Principles of Adsorption and Adsorption Processes.New York : John Wiley &Sons , 1984. chapter 3
[46] Ma Y, Xia Y, Zhao M, et al . Phys. Rev. B , 2001 , 63 : 115422
[47] Zhou Y P , Zhou L. Sep. Sci . & Technol . , 1998 , 33 ( 12) :1787 —1802
[48] Zhou L , Zhou Y P. Chem. Eng. Sci . , 1998 , 53 (14) : 2531 —2536
[49] Zhou L , Zhou Y P. Chinese J . Chem. Eng. , 2001 , 9 ( 1) :110 —115
[50] Zhou L , Zhang J S , Zhou Y P. Langmuir , 2001 , 17 ( 18) :5503 —5507
[51] ZhouL , Zhou Y P , Li M, et al . Langmuir , 2000 , 16 ( 14) :5955 —5959
[52] Brunauer S , Emmett P H , Teller E. J . Am. Chem. Soc. , 1938 ,60 (2) : 309 —319
[53] Beebe B A , Biscoe J , Smith W R , et al . J . Am. Chem. Soc. ,1947 , 69 (1) : 95 —101
[54] Strêbel R , Jêrisen L , Schliermann T , et al . J . Power Sources ,1999 , 84 : 21
[55] Nijkamp M G, Raaymakers J E M J , van Dillen A J , et al . Appl .Phys. A , 2001 , 72 : 619 —623
[56] Zhou L , Zhou Y P , Sun Y. Int . J . Hydrogen Energy , 2004 , 29(3) : 319 —322
[57] 周亚平(Zhou Y P) , 冯奎(Feng K) , 孙艳(Sun Y) 等. 化学进展(Progress in Chemistry) , 2003 , 15 (5) : 345 —350
[58] Braslaw J , Nasen J Jr , Golovoy A. Hydrocarbon Technology Environment , Alternative Energy Sources ( ed. Veziroglu T N) .1981
[59] Matranga K R , Myers A L , Glandt E D. Chem. Eng. Sci . ,1992 , 47 (7) : 1569 —1579
[60] McDonald J A F , Quinn D F. Fuel , 1998 , 77 (1/2) : 61 —64
[61] Inomata K, Kanazawa K, Urabe Y, et al . Carbon , 2002 , 40 :87 —93
[62] 周理(Zhou L) , 孙艳(Sun Y) , 周亚平(Zhou Y P) . CN 01141 967. 9
[63] Zhou L , Sun Y, Zhou Y P. AIChE Journal , 2002 , 48 : 2412 —2416
[64] Zhou L , Dai M, Zhou Y P. Carbon , 2004 , 42 (8/9) : 1855 —1858
[65] 陈海华(Chen H H) . 天津大学硕士学位论文(MS Thesis of Tianjin U. , 2002)
[66] 代淼(Dai M) , 周理(Zhou L) , 周亚平(Zhou Y P) . 化学进展(Progress in Chemistry) , 2004 , 747 —750

[1] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[2] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[3] 王雨萌, 杨蓉, 邓七九, 樊潮江, 张素珍, 燕映霖. 双金属MOFs及其衍生物在电化学储能领域中的应用[J]. 化学进展, 2022, 34(2): 460-473.
[4] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[5] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[6] 王斐然, 蒋峰景. 全钒液流电池离子导电膜[J]. 化学进展, 2021, 33(3): 462-470.
[7] 严壮, 刘雅玲, 唐智勇. 二维导电金属有机骨架材料[J]. 化学进展, 2021, 33(1): 25-41.
[8] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.
[9] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[10] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[11] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[12] 周启峰, 江波*, 杨海波*. 可作为碳纳米管片段的共轭芳烃大环的设计合成[J]. 化学进展, 2018, 30(5): 628-638.
[13] 王晶, 姚楠*. 适用于合成气制甲烷的Ni基催化剂[J]. 化学进展, 2017, 29(12): 1509-1517.
[14] 赵晨欢, 张文强, 于波*, 王建晨, 陈靖. 固体氧化物电解池[J]. 化学进展, 2016, 28(8): 1265-1288.
[15] 罗杰, 李朝威, 兰竹瑶, 陈名海, 姚亚刚, 赵岳. 纳米碳基材料在导电胶黏剂中的应用[J]. 化学进展, 2015, 27(9): 1158-1166.