English
新闻公告
More
化学进展 2005, Vol. 17 Issue (04): 643-650 前一篇   后一篇

• 综述与评论 •

热化学循环分解水制氢研究进展*

张平**;于波;陈靖;徐景明   

  1. 清华大学核能与新能源技术研究院 北京 100084
  • 收稿日期:2004-05-01 修回日期:2004-08-01 出版日期:2005-07-24 发布日期:2005-07-24
  • 通讯作者: 张平

Study on the Hydrogen Production by Thermochemical Water Splitting

Zhang Ping**;Yu Bo;Chen Jing;Xu Jingming   

  1. Institute of Nuclear Energy Technology, Tsinghua Universily,Beijing 100084,China
  • Received:2004-05-01 Revised:2004-08-01 Online:2005-07-24 Published:2005-07-24
  • Contact: Zhang Ping
热化学循环分解水制氢是利用核能或太阳能进行大规模、无污染制氢的有前景的方法 ,已经提出了多种流程.本文对热化学制氢流程及其评价标准进行了综述,重点介绍了碘硫循环、UT-3循环和Westinghouse循环等先进流程的研究进展.
Thermochemical water splitting is a promising method to produce massive hydrogen using nuclear reactor or solar energy without CO2 releasing. Thermochemical processes developed and the criteria of evaluation are discussed and reviewed. The emphasis is on the most promising processes, including iodine-sulfur (IS) process, UT-3 process and Westinghouse process.

中图分类号: 

()

[ 1 ] 王艳辉(Wang Y H) , 吴迪镛(Wu D Y) , 迟建(Chi J ) . 化工进展(Chemical Industry and Engineering Progress) , 2001 , 1 : 6
[ 2 ] 李乃朝( Li N C ) , 衣宝廉( Yi B L ) . 电化学(Electrochemistry) , 1997 , 3(2) : 125 —131
[ 3 ] 衣宝廉(Yi B L) . 中国电池工业(Chinese Battery Industry) ,2003 , 8(1) : 16 —24
[ 4 ] IAEA. Hydrogen as an Energy Carrier and Its Production by Nuclear Power. IAEA-TECDOC-1085 , 1999. 101 —130
[ 5 ] Rogner H H. Nuclear Production of Hydrogen , First Information Exchange Meeting. Paris , 2000. 11 —24
[ 6 ] Funk J E. Int . J . Hydrogen Energy , 2001 , 26 : 185 —190
[ 7 ] Kogan A. Int . J . Hydrogen Energy , 1997 , 22(5) : 481 —486
[ 8 ] Funk J E , Reinstrom M R. Final Report Energy Depot Electrolysis Systems Study , TID 20441 , Vol . 2 , supplement A , 1964
[ 9 ] Beghi G E. Int . J . Hydrogen Energy , 1986 , 11(12) : 761 —771
[10] Besenbruch G E , Brown L C , Funk J E , et al . Nuclear Production of Hydrogen , First Information Exchange Meeting.Paris , 2000. 205 —218
[11] Nakamura T. Solar Energy , 1977 , 19 : 467 —475
[12] Steinfeld A , Sanders S , Palumbo R. Solar Energy , 1999 , 56(1) :43 —53
[13] Weidenkaff A , Reller A W, Wokaun A , et al . Thermochimica Acta , 2000 , 359 : 69 —75
[14] Steinfeld A. Int . J . Hydrogen Energy , 2002 , 27 : 611 —619
[15] Sturzenegger M, Nuesch P. Energy , 1999 , 24 : 959 —970
[16] Lundberg M. Int . J . Hydrogen Energy , 1993 , 18 : 369 —376
[17] Tamaura Y, Kojima N , Hasegawa N , et al . Int . J . Hydrogen Energy , 2001 , 26 : 917 —923
[18] Kuhn P , Ehrensberger K, Steiner E , et al . Solar Engineering.New York : American Society of Mechanical Engineers , 1995. 375
[19] Ehrensberge K, Frei A , Kuhn P , et al . Solid State Ionics , 1995 ,56 : 151 —160
[20] Kojima M, Sano T , Wada Y, et al . J . Phys. Chem. Solids ,1996 , 57 : 1757 —1763
[21] IAEA. Hydrogen as an Energy Carrier and Its Production by Nuclear Power. IAEA-TECTOD-1085 , 1999. 325 —332
[22] Norman G H , Besencruch L C , Brown L C , et al . Thernochemical Water-Splitting Cycle , Bench-scale Investigations and Process Engineering , Final Repoert for Ther Period February 1977 through December 31 , 1981. GA-A16713 , 1982
[23] Shiozawa S , Ogawa M, Inagaki Y, et al . Nuclear Production of Hydrogen , First Information Exchange Meeting. Paris , 2000.57 —69
[24] Onuki K, Nakajiama H. AIChE Spring National Meeting. New Orleans , 2003
[25] Duigou A L , Vitart X, Anzieu P. Global 2003. New Orleans ,2003. 1470 —1477
[26] Roth M, Knoche K F. Int . J . Hydrogen Energy , 1989 , 14 : 545
[27] Berndhaeuser C , Knoche K. Int . J . Hydrogen Energy , 1994 , 19 :239
[28] Onuki K, Hwang G J , Arifal S , et al . Journal of Membrane Science , 2001 , 192 : 193 —199
[29] Onuki K, Hwang G J , Shimizu S. Journal of Membrane Science ,2000 , 175 : 171 —179
[30] Hwang G J , Onuki K, Nomura M, et al . Journal of Membrane Science , 2003 , 220 : 129 —136
[31] Hwang G J , Onuki K. Journal of Membrane Science , 2001 , 194 :207 —215
[32] Hwang G J , Onuki K, Shimizu S. AIChEJ . , 2000 , 46 : 92 —98
[33] Porisini F C. Int . Journal of Hydrogen Energy , 1989 , 14 (4) :267 —274
[34] Futakawa M, Onuki K, Ioka I. Corrosion Engineering , 1997 , 46 :811 —819
[35] Kubo S , Futakawa M, Ioka I , et al . Spring National Meeting.New Orleans , 2003
[36] Yoshida K, Kameyama H , Aochi T , et al . Int . J . Hydrogen Energy , 1990 , 15 : 171 —178
[37] Sakurai M, Bilgen E , Tsutsumi A , et al . Solar Energy , 1996 , 57(1) : 51 —58
[38] Sakurai M, Tsutsumi A , Yoshida K. Int . J . Hydrogen Energy ,1995 , 20(4) : 297 —301
[39] Sakurai M, Tsutsumi A , Yoshida K. Int . J . Hydrogen Energy ,1996 , 21(10) : 871 —875
[40] Doctor R D , David C W, Mendelsohn M H. AIChE Spring National Meetintg. New Orleans , 2002
[41] Oney B , Saito Y. Oxidation Metals , 1993 , 40 : 65 —83
[42] Smudde G H. Corrosion Science , 1995 , 37 : 1931 —1946
[43] Goossen J E , Lahoda E J , Matzie R A , et al . Global 2003. New Orleans , 2003. 1509 —1513
[44] Smith W N , Santangelo J G. Hydrogen : Production and Marketing. Washington D C: American Chemical Society , 1980.374
[45] Weirich W, Knoche K F , Behr F , et al . Nucl . Eng. Des. ,1984 , 78 : 285 —291
[46] Barnert H. Report Jül21660 , Research Center Jülich. 1980
[47] Herzok F. Technical Report , Document HUF-4 , Research Center Jülich , 1990. 99 —103
[48] Besenbruch G E. Brown L C , Funk J E , et al . First Information Exchange Meeting. Paris , 2000. 205 —218

[1] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[2] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[3] 郭俊兰, 梁英华, 王欢, 刘利, 崔文权. 光催化制氢的助催化剂[J]. 化学进展, 2021, 33(7): 1100-1114.
[4] 曹军文, 张文强, 李一枫, 赵晨欢, 郑云, 于波. 中国制氢技术的发展现状[J]. 化学进展, 2021, 33(12): 2215-2244.
[5] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
[6] 姚淇露, 杜红霞, 卢章辉. 氨硼烷催化水解制氢[J]. 化学进展, 2020, 32(12): 1930-1951.
[7] 陈雅静, 李旭兵, 佟振合, 吴骊珠. 人工光合成制氢[J]. 化学进展, 2019, 31(1): 38-49.
[8] 赵冲, 徐芬*, 孙立贤*, 范明慧, 邹勇进, 褚海亮. 铝基材料水解制氢技术[J]. 化学进展, 2016, 28(12): 1870-1879.
[9] 张圆正, 谢利利, 周怡静, 殷立峰*. 二维Z型光催化材料及其在环境净化和太阳能转化中的应用[J]. 化学进展, 2016, 28(10): 1528-1540.
[10] 王栋东, 董化, 雷小丽, 于跃, 焦博, 吴朝新. 光敏化铱配合物三线态材料[J]. 化学进展, 2015, 27(5): 492-502.
[11] 翟康, 李孔斋, 祝星, 魏永刚. 两步热化学分解水制氢用氧交换材料[J]. 化学进展, 2015, 27(10): 1481-1499.
[12] 殷巧巧, 乔儒, 童国秀. 离子掺杂氧化锌光催化纳米功能材料的制备及其应用[J]. 化学进展, 2014, 26(10): 1619-1632.
[13] 马广璐, 庄大为, 戴洪斌, 王平. 铝/水反应可控制氢[J]. 化学进展, 2012, 24(04): 650-658.
[14] 李晓慧, 范同祥. 人工光合作用[J]. 化学进展, 2011, 23(9): 1841-1853.
[15] 张超, 郎林, 阴秀丽, 吴创之. 生物乙醇重整制氢反应器[J]. 化学进展, 2011, 23(4): 810-818.
阅读次数
全文


摘要

热化学循环分解水制氢研究进展*