English
新闻公告
More
化学进展 2004, Vol. 16 Issue (06): 975- 前一篇   后一篇

• 综述与评论 •

微流控芯片系统在单细胞研究中的应用*

高健;殷学锋**;方肇伦   

  1. (浙江大学化学系微分析系统研究所 杭州 310027)
  • 收稿日期:2003-10-01 修回日期:2004-02-01 出版日期:2004-11-24 发布日期:2004-11-24
  • 通讯作者: 殷学锋

Application of Microfluidic Chip Systems for the Research of Single Cell

Gao Jian;Yin Xuefeng**;Fang Zhaolun   

  1. (Institute of Microanalytical Systems, Department of Chemistry,Zhejiang University, Hangzhou 310027, China)
  • Received:2003-10-01 Revised:2004-02-01 Online:2004-11-24 Published:2004-11-24
  • Contact: Yin Xuefeng
微流控芯片具有网络式通道结构,扩展了在细胞和亚细胞水平进行生命科学研究的能力,为单细胞研究提供了一个新的平台.在微流控芯片通道中,人们利用气压、液压和电压,或利用介电电泳、光学陷阱、行波介电电泳以及磁场等技术,可以操纵细胞通过或驻留在通道内的任意位置,从而使单细胞计数、筛选以及胞内组分分析等操作大大简化.本文对微流控芯片系统在血液流变学、单细胞操纵与计数以及单细胞胞内组分分析中的应用进行了综述,介绍了用于单细胞研究的多种微芯片系统,讨论了芯片上进行单细胞操纵的各种方法
The development of microfluidic chip system provides a new platform for the research of single cell. Be-cause the sophistication and variety of microdevices and systems being built, the ability to study life at the cellular level and below is extended. On the microfluidic chip, an individual cell can be controlled and handled easily by use of pneu-matic pressure, hydraulic pressure, voltage, dielectrophoresis force (DEP), optical trapper, traveling-wave dielectro-phoresis (twDEP) and magnetic field, etc. The couplings of above techniques with microfluidic chip systems can operate the single cells to transit or dock anywhere in the micro channels. So the operations of single cell's counter, sorting and analysis were achieved conveniently. In this paper, the applications of microfliudie systems on blood rheology, counter or sorting, and intracellular contents analysis are reviewed. Several microfliudie chip.systems used for study single cell are introduced. The operation methods on single cell are discussed.

中图分类号: 

()

[ 1 ] Zabzdyr J L , Lillard S J . Trends Anal . Chem. , 2001 , 20 : 467 —476
[ 2 ] Yeung E S. J . Chromatogr. A , 1999 , 830 : 243 —262
[ 3 ] Hogan B L , Yeung E S. Anal . Chem. , 1992 , 64 : 2841 —2845
[ 4 ] 程介克(Cheng J K) , 王宗礼(Wang Z L) . 高等学校化学学报(Chem. J . Chin. Univ. ) ,1997 , 18 : 1046 —1053
[ 5 ] Manz A , Graber N , Widmer H M. Sens Actuators B , 1990 , B1 :244 —248
[ 6 ] Tracey M C , Greenaway R S , Das A , Kaye P H , Barnes A J .IEEE Trans. Biomed. Eng. , 1995 , 42 (8) : 751 —761
[ 7 ] Ogura E , Abatti P J , Morizumi T. IEEE Trans. Biomed. Eng. ,1991 , 38 (8) : 721 —725
[ 8 ] Tracey M C , Kaye P H , Shepherd J N. Solid-State Sensors and Actuators , TRANSDUCERS ’91 , California , 1991. 82 —84
[ 9 ] Kikuchi Y, Sato K, Ohki H , Kaneko T. Microvas. Res. , 1992 ,44 :226 —240
[10] Brody J P , Yager P , Goldstein R E , Austin R. Biophys. J . ,1996 , 71 :3430 —3441
[11] Bakajin O , Carlson R , Chou C F , Chan S , Gabel C , Knight J ,Cox T, Austin R H. Solid-State Sensor and Actuator Workshop ,Hilton Head , Island , SC: 1998. 97 —98
[12] Carlson R , Gabel C , Chan S , Austin R , Brody J , Winkleman J .SPIE , 1997 , 2978 :206 —215
[13] Sobek D , Senturia S , Gray M. Solid-State Sensor and Actuator Workshop , Hilton Head , S C:1994. 120 —121
[14] Larsen U , Blankenstein G, Branebjerg J . Solid State Sensors and Actuators , TRANSDUCERS’97 Chicago , 1997 , vol . 2. 1319 —1322
[15] Gawad S , Schild L , Renaud P. Lab on a Chip , 2001 , 1 : 76 —82
[16] Krüger J , Singh K, O’Neill A , Jackson C , Morrison A. O’Brien P. J . Micromech. Microeng. , 2002 , 12 : 486 —494
[17] Lin C H , Lee GB. J . Micromech. Microeng. , 2003 , 13 : 447 —453
[18] Dittrich P S , Schwille P. Anal . Chem. ,2003 , 75 :5767 —5774
[19] Fuhr G, Zimmermann U , Shirley S G. Principles and Potential in Electromanipulation of Cells (eds. ) Zimmerman U , Neu GA. Boca Raton : CRC Press , 1996. 259 —328
[20] Morishima K, Arai F , Fukuda T, Matsuura H , Yoshikawa K. Analytica Chimica Acta , 1998 , 365 : 273 —278
[21] Müller T, Gradl G, Howitz S , Shirley S , Schnelle T, Fuhr G.Biosensors &Bioelectronics , 1999 , 14 : 247 —256
[22] Arai F , Ichikawa A , Ogawa M, Fukuda T, Horio K, Itoigawa K.Electrophoresis , 2001 , 22 : 283 —288
[23] Wakamoto Y, Inoue I , Moriguchi H , Yasuda K. Fresenius’J .Anal . Chem. , 2001 , 371 (2) : 276 —281
[24] McClain M A , Culbertson C T, Jacobson S C , Ramsey J M.Anal . Chem. , 2001 , 73 (21) : 5334 —5338
[25] Gasperis G D , Yang J , Becker F F , Gascoyne P R C , Wang X B.Biomedical Microdevices , 1999 , 2 (1) : 41 —49
[26] Talary M S , Burt J P H , Tame J A , Pethig R. J . Phys. D: Appl .Phys. , 1996 , 29 :2198 —2203
[27] Cui L , Holmes D , Morgan H. Electrophoresis , 2001 ,22 :3893 —3901
[28] Cui L , Zhang T, Morgan H. J . Micromech. Microeng. , 2002 ,12 : 7 —12
[29] Pant K, Feng J , Wang G, Krishnamoorthy S , Sundaram S. 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems , Squaw Valley , California USA , 2003. 1207 —1210
[30] Wang L , Guo M, Huang C J , Cheng J . 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems , Squaw Valley , California USA , 2003. 299 —302
[31] Goubault C , Viovy J L , Bibette J . 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems , Squaw Valley , California USA ,2003. 239 —241
[32] Rong R , Choi J W, Ahn C H. 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems , Squaw Valley , California USA ,2003. 335 —338
[33] Son S , Lee S S. 7th International Conference on Miniaturized Chemical and Biochemical Analysts Systems , Squaw Valley , California USA ,2003. 147 —150
[34] Li P C H , Harrison D J . Anal . Chem. ,1997 , 69 :1564 —1568
[35] Yang M, Li CW, Yang J . Anal . Chem. ,2002 , 74 : 3991 —4001
[36] Wheeler A R , Throndset W R , Whelan R J , Leach A M, Zare R N , Liao Y H , Farrell K, Manger I D , Daridon A. Anal . Chem. ,2003 , 75 : 3581 —3586
[37] Huang W H , Cheng W, Zhang Z. Anal . Chem. , 2004 ,76 :483 —488
[38] 程伟(Cheng W) ,黄卫华(Huang W H) , 庞代文(Pang D W)等, 高等学校化学学报(Chem. J . Chin. Univ. ) , 2003 , 24(9) :1585 —1587
[39] McClain M A , Culbertson C T, Jacobson S C , et al . Anal .Chem. , 2003 , 75 :5646 —5655
[40] 高健(Gao J ) , 殷学锋(Yin X F) , 方肇伦(Fang Z L) . 高等学校化学学报(Chem. J . Chin. Univ. ) , 2003 , 24 (9) : 1582 —1584
[41] Gao J , Yin X F , Fang ZL. Lab on a Chip , 2004 , 4 :47 —52

[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[3] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[4] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[5] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[6] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[7] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[8] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[9] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[10] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[11] 赵旭, 王克青, 李博, 李长青, 林雨青*. 微电极制备、表面修饰及活体/单细胞电分析应用[J]. 化学进展, 2017, 29(10): 1173-1183.
[12] 邓王平, 王丽华, 宋世平, 左小磊. 生物传感器在POCT中的应用研究[J]. 化学进展, 2016, 28(9): 1341-1350.
[13] 蒋艳, 徐溢, 王人杰, 苏喜, 董春燕. 新型纳米荧光探针在微流控细菌芯片检测中的应用[J]. 化学进展, 2015, 27(9): 1240-1250.
[14] 雷相阳, 邱宪波, 葛胜祥, 夏宁邵, 陈兴, 崔大付. 基于微流控芯片的CD4+T淋巴细胞计数检测[J]. 化学进展, 2015, 27(7): 870-881.
[15] 王晓萍, 洪夏云, 詹舒越, 黄子昊, 庞凯. 表面等离子体共振传感技术和生物分析仪[J]. 化学进展, 2014, 26(07): 1143-1159.