English
新闻公告
More
化学进展 2004, Vol. 16 Issue (06): 843-   后一篇

• 综述与评论 •

取向碳纳米管制备方法及其应用进展*

米万良1;林跃生1,2**;张宝泉1;李永丹1;蒋海洋1   

  1. (1.天津大学化工学院 天津 300072; 2. Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA)
  • 收稿日期:2003-10-01 修回日期:2004-03-01 出版日期:2004-11-24 发布日期:2004-11-24
  • 通讯作者: 林跃生

Progress in Preparation Methods and Applications of Aligned Carbon Nanotubes

Mi Wanliang1;Lin Yaosheng1,2**;Zhang Booquan1;Li Yongdan1;Jiang Haiyang1   

  1. (1.School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,China; 2.Department of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA)
  • Received:2003-10-01 Revised:2004-03-01 Online:2004-11-24 Published:2004-11-24
  • Contact: Lin Yaosheng
碳纳米管有广阔的应用前景,但很多应用是以碳纳米管定向的取向排列为前提.本文全面介绍了制备取向碳纳米管的各种方法和研究进展,综合阐述了各种制备方法的特点,并初步讨论了制备取向生长碳纳米管各种方法的机理.最后,对取向碳纳米管的应用进行了展望,提出了碳纳米管应用的新思路.
Carbon nanotubes have bright future of application, but most of the applications require aligned carbon nanotubes. The synthesis methods and research progress for preparation of aligned carbon nanotubes are introduced. The characteristics of current preparation methods and the growth mechanisms of different preparation methods for aligned car-bon nanotubes are discussed . Finally, the potential applications of aligned carbon nanotubes together with some novel ap-plication ideas are supplied.

中图分类号: 

()

[ 1 ] Iijima S. Nature , 1991 , 354 : 56 —58
[ 2 ] Grêning O , Küttel M, Emmengger C , Grêning P , Schlapbach L.J . Vac. Sci . Technol . , 2000 , B18 (2) : 665 —678
[ 3 ] Popov V N , van Doren V E. Phys. Rev. , 2000 , B61 ( 4) :3078 —3084
[ 4 ] Thess A , Lee R , Nikolaev P , Dai H J , Petit P , Robert J , Xu C H , Lee Y H , Kim S G, Rinzler A G, Colbert D T, Scuseria G E ,Tománek D , Fishcher J E , Smalley R E. Science , 1996 , 273 :483 —487
[ 5 ] Collins P G, Zettl A , Bando H , Thess A , Smalley R E. Science ,1997 , 278 : 100 —102
[ 6 ] Liu J , Rinzler A G, Dai H J , Hafner J H , Bradley R K, Boul P J , Lu A , Iverson T, Shelimov K, Huffman C B , Rodriguez-Macias F , Shon Y S , Lee T R , Colbert D T, Smalley R E. Science ,1998 , 280 : 1253 —1255
[ 7 ] Kong J , Soh H T, Cassell A M, Quate C F , Dai H J . Nature ,1998 , 395 : 878 —881
[ 8 ] Skoulidas A I , AcKerman D M, Johnson J K, Sholl D S. Phys.Rev. Lett . , 2002 , 89 : Art . No. 185901
[ 9 ] Satishkumar B C , Govindaraj A , Rao C N R. Chem. Phys.Lett . , 1999 , 307 : 158 —162
[10] Nath M, Satishkumar B C , Govindaraj A , Vinod C P , Rao C N R. Chem. Phys. Lett . , 2000 , 322 : 333 —340
[11] Qin L C , Iijima S. Chem. Phys. Lett . , 1997 , 269 : 65 —71
[12] Huang H J , Kajiura H , Yamada A , Ata M. Chem. Phys. Lett . ,2002 , 356 : 567 —572
[13] Orlanducci S , Sessa V , Terranova M L , Rossi M, Manno D.Chem. Phys. Lett . , 2003 , 367 : 109 —115
[14] Zhu H W, Cao A Y, Li X S , Xu C L , Mao Z Q , Ruan D B , Liang J , Wu D H. Applied Surface Science , 2001 , 178 : 50 —55
[15] Walters D A , Casavant M J , Qin X C , Huffman C B , Boul P J ,Ericson L M, Haroz E H , O’Connell MJ , Smith K, Colbert D T,Smalley R E. Chem. Phys. Lett . , 2001 , 338 : 14 —20
[16] Shimoda H , Fleming L , Horton K, Zhou O. Physica , 2002 ,B323 : 135 —136
[17] Ajayan P M, Stephan O , Colliex C , Trauth D. Science , 1994 ,265 : 1212 —1214
[18] Li W Z, Xie S S , Qian L X, Chang B H , Zou B S , Zhou W Y,Zhao R A , Wang G. Science , 1996 , 274 : 1701 —1703
[19] Pan Z W, Xie S S , Chang B H , Wang C Y, Lu L , Liu W, Zhou W Y, Li W Z. Nature , 1998 , 394 : 631 —632
[20] Fan S S , Chapline M G, Franklin N R , Tombler T W, Cassell A M, Dai HJ . Science , 1999 , 283 : 512 —514
[21] Pan Z W, Xie S S , Chang B H , Sun L F , Zhou W Y, Wang G.Chem. Phys. Lett . , 1999 , 299 : 97 —102
[22] Martin C R. Science , 1994 , 266 : 1961 —1966
[23] Ren Z F , Huang Z P , Xu J W, Wang J H , Bush P , Siegal M P ,Provencio P N. Science , 1998 , 282 : 1105 —1107
[24] Lee C J , Park J . Appl . Phys. Lett . , 2000 , 77 (21) : 3397 —3399
[25] Yoon Y J , Baik H K. Diamond and Related Materials , 2001 , 10 :1214 —1217
[26] Choi Y C , Kim D W, Lee T J , Li C J , Li Y H. Synthetic Metals ,2001 , 117 : 81 —86
[27] Jung M, Eun K Y, Baik Y J , Lee K R , Shin J K, Kim S T. Thin Solid Films , 2001 , 398 : 150 —155
[28] Wang X B , Liu Y Q , Zhu D B. J . Appl . Phys. A: Materials Science and Processing , 2000 , 71 : 347 —348
[29] Tsai S H , Chiang F K, Tsai T G, Shieu F S , Shih H C. Thin Solid Films , 2000 , 366 : 11 —15
[30] Jirage K B , Hulteen J C , Martin C R. Science , 1997 , 278 :655 —658
[31] Han J H , Kim H J , Yang M H , Yang C W, Yoo J B , Park C Y,Song Y H , Nam K S. Materials Science and Engineering , 2001 ,C16 : 65 —68
[32] Lee C J , Kim D W, Lee T J , Choi Y C , Park Y S , Lee Y H ,Choi WB , Lee N S , Park G S , Kim J M. Chem. Phys. Lett . ,1999 , 312 : 461 —468
[33] Ho G W, Wee A T S , Lin J , Tjiu W C. Thin Solid Film , 2001 ,388 : 73 —77
[34] Hulteen J C , Chen H X, Chambliss C K, Martin C R. Nanostructured Materials , 1997 , 9 : 133 —136
[35] Zhang X Y, Zhang L D , Zheng M J , Li G H , Zhao L X. J . Crystal Growth , 2001 , 223 : 306 —310
[36] Che G, Lakshmi B B , Martin C R , Fisher E R. Chem. Mater. ,1998 , 10 : 260 —267
[37] Hornyak G L , Dillon A C , Parila P A , Schneider J J , Czap N ,Jones K M, Fasoon F S , Mason A , Heben M J . Nanostructured Materials , 1999 , 12 : 83 —88
[38] Lu J P. Journal of Physics and Chemistry of Solids , 1997 , 58 :1649 —1652
[39] De Heer W A , Chatelain A , Ugarte D. Science , 1995 , 270 :1179 —1181
[40] Yang R T, Chen J P. J . Catal . , 1989 , 115 : 52 —64
[41] Wang S G, Wang J H , Ma Z B , Wang C X, Man W D , Zhang B H. Diamond and Related Materials , 2003 , 12 : 2175 —2177
[42] Zhang W D , Wen Y, Li J , Xu G Q , Gan L M. Thin Solid Film ,2002 , 422 : 120 —125
[43] Yang Q , Xiao C , Chen W, Singh A K, Asai T, Hirose A. Diamond and Related Materials , 2003 , 12 : 1482 —1487

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[5] 王龙, 周庆萍, 吴钊峰, 张延铭, 叶小我, 陈长鑫. 基于碳纳米管的光伏电池[J]. 化学进展, 2023, 35(3): 421-432.
[6] 张晓菲, 李燊昊, 汪震, 闫健, 刘家琴, 吴玉程. 第一性原理计算应用于锂硫电池研究的评述[J]. 化学进展, 2023, 35(3): 375-389.
[7] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[12] 吴飞, 任伟, 程成, 王艳, 林恒, 张晖. 基于生物炭的高级氧化技术降解水中有机污染物[J]. 化学进展, 2022, 34(4): 992-1010.
[13] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[14] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[15] 何闯, 鄂爽, 闫鸿浩, 李晓杰. 碳点在润滑领域中的应用[J]. 化学进展, 2022, 34(2): 356-369.