English
新闻公告
More
化学进展 2004, Vol. 16 Issue (03): 400- 前一篇   后一篇

• 综述与评论 •

燃料电池技术在电催化反应领域的应用

宋海华;邬慧雄;马海洪*   

  1. (天津大学化工学院 天津 300070; 天津大学石油化工技术开发中心 天津 300072)
  • 收稿日期:2003-04-01 修回日期:2003-07-01 出版日期:2004-05-24 发布日期:2004-05-24
  • 通讯作者: 马海洪

Applications of Fuel Cell Reactor in Electrocatalyze Reactions

Song Haihua;Wu Huixiong;Ma Haihong*   

  1. (School of Chemical Engineering, Tianjin University, Tianjin 300070, China ; Research and Development Center for Petrochemical Technology, Tiajin University, Tianjin 300072, China)
  • Received:2003-04-01 Revised:2003-07-01 Online:2004-05-24 Published:2004-05-24
  • Contact: Ma Haihong
燃料电池反应器是一种既能生产有价值化学品,又能同时发电的新型单元操作装置.由于其安全、反应易受控制、无污染,且能源资源利用率高的特点,日益受到各国工业部门的重视.本文评述了几类燃料电池反应器如酸性燃料电池、质子交换膜燃料电池和固体氧化物燃料电池的用途、工作原理及其实现工业化所面临的几个主要问题。
In order to produce valuable chemicals and electric energy at the same time, fuel cell type reactor (FCR) has been proposed. The features of the FCR are: (l) the energy of oxidation which is converted into potential en-ergy between cathode and anode can be directly used as the electric power, therefore, it theoretically has high electrical efficiencies; (2) reaction mixture were not directly mixed, so the safety is improved and gaseous combustion reaction is avoided; (3) the activity of surface oxidant species on anode catalyst is controlled by applying external potential to the electrode catalysts so that partial oxidation reactions can be enhanced by many orders of magnitude. FCR is widely used in a variety of catalytic reactions on Pt, Pd, Ag, Ni, Au, IrO2 and RuO2 surfaces. In this paper, the principle of opera-tion of three kinds of FCR, including sour fuel cell reactor, proton-exchange membrane fuel cell reactor, solid-oxide fuel cell reactor, is depicted, and a comparison between FCR and other conventional chemical reactors is made. Furthermore, the major problems which will be encountered in the industrialization of FCR are also discussed.

中图分类号: 

()

[1] Lindstrom O. Chemtech , 1988 , 18 (11) : 686 —697
[2] Amphlet J C , Mann R F. J . Power Sources , 1998 , 71 : 179 —184
[3] Emonts B , Bogild J . J . Power Sources , 1998 , 71 : 288 —293
[4] Wies W, Emonts B. J . Power Sources , 1999 , 84 : 187 —193
[5] Langer S H , Coluccirions J A. Chemtech , 1985 , 15 (4) : 226 —233
[6] Langer S H , Sakellaropoulos G P. J . Electrochem. Soc. , 1975 ,122 (12) : 1619 —1626
[7] Sakellaropoulos G P , Langer S H. J . Electrochem. Soc. , 1977 ,124 (10) : 1548 —1562
[8] Kiyoshi O , Midenori S , Ichiro Y. J . Electrochem. Soc. , 1996 ,113 (11) : 3491 —3497
[9] Tomohiko J C , Kyaw K M, Mitsanobu I , et al . Chem. Eng.Sci . , 1999(54) : 1553 —1557
[10] Riensche W X, Meusinger J , Stimming U , et al . J . Power Sources , 1998(71) : 306 —314
[11] Riensche W X, Stimming U , Unverzagt G. J . Power Sources ,1998 , 73 : 251 —256
[12] Unverzagt G. PhD Thesis , RWTH Aachen , 1995
[13] Peters R , Riensche E , Cremer P. J . Power Sources , 2000 , 86 :432 —441
[14] Aercs G, Frost J , Hards G, et al . Cata. Today , 1997 , 38 :393 —400
[15] Ralph T, Hards G. Chem. Ind. Lond. , 1998(8) : 334 —335
[16] Ito M, Tagawa T, Goto S. Applied Catalysis A: General , 1999 ,181 ( I) : 73 —80
[17] Tagawa T, Moe K K, Ito M, et al . Chem. Eng. Sci . , 1999 , 54(10) : 1553 —1557
[18] Ishihara T, Yamads T, Akbay T, et al . Chem. Eng. Sci . ,1999 , 54 (10) : 1535 —1540
[19] Costamagna P , Araco E , Anconucci P L , et al . ISCRE , 1996(51) : 5 —8
[20] Sundmacher K, Hoffmann U. ISCRE , 1998 (54) : 15
[21] 陈晓霞(Cheng X X) . 酸碱盐工业(Chloralkali Industry) ,1993(3) : 17 —19
[22] Ostuka K, Yamanaka I. Electrochemical Acta , 1989 , 31 (10) :1485 —1488
[23] 李俊(Li J ) , 赵玲(Zhao L) , 张新胜(Zhang X S) , 等. 化学反应工程与工艺(Chemical Reaction Engineering and Technology) ,2001 , 17 (3) : 222 —226
[24] 李俊(Li J ) , 赵玲(Zhao L) , 张新胜(Zhang X S) , 等. 化学反应工程与工艺(Chemical Reaction Engineering and Technology) ,2001 , 17 (3) : 227 —232
[25] Niedrach L W. US 3 297 484 , 1967
[26] Stafford G R. Electrochemical Acta , 1987 , 32 (8) : 1137 —1143
[27] Anca F G. Solid State &Materials Science , 2002 (6) : 389 —399
[28] 袁晓姿(Yuan X Z) , 马紫峰(Ma Z F) . 化学反应工程与工艺(Chemical Reaction Engeering and Technology) , 2001 , 17 (14) :370 —373
[29] Dudeld C D , Chen R , Adcock P L. International Journal of Hydrogen Energy , 2001 , 26 : 763 —775
[30] Ruettinger W, Ilinich O , Robert J , et al . J . Power Sources ,2003 , 118 : 61 —65
[31] Dudfield C D , Chen R , Adcock P L. J . Power Sources , 2000 , 85(2) : 237 —244
[32] Ostuka K, Yamanaka I. Electrochemical Acta , 1990 , 35 (2) :319 —325
[33] Vayenas C G, Farr R D. Science , 1980 , 208 (9) : 593 —601
[34] Vayenas C G, Ortman D E. US 4 272 336 , 1981
[35] Dudfield C D , Chen R , Adcock P L. J . Power Sources , 2000 ,86 : 214 —222
[36] Carrillo A S , Tagawa T, Goto S. Materials Research Bulletin ,2001(36) : 1017 —1027
[37] Aruna S T, Muthuraman M, Patil K G. Solid State Ionics , 1998(111) : 45
[38] Semina G L , Belyaeva V D , Deminb A K. Applied Catalysis ,1999(181) : 131 —137
[39] Peters R , Riensche E , Cremer P. J . Power Sources , 2000 , 86 :432 —441
[40] Saracco G, Specchia V. Catal . Rev. Sci . Eng. , 1994 , 36 : 305
[41] Neophytides S , Vayenas C G. J . Electrochem. Soc. , 1990 , 137(3) : 839 —843
[42] Vayenas C G. Solid State Ionics , 1988 , 28 (3) : 1521 —1527
[43] Joensen F , Jens Rrostrap N. J . Power Sources , 2002 , 105 :195 —201
[44] Eng D , Stoukides M. Catal . Rev. Sci . Eng. , 1991 , 33 : 375 —381
[45] Tagawa T, Moe K K, Hiramatsu T, et al . Solid State Ionics ,1998 , 106 : 227 —232
[46] Moe K K, Tagawa T, Goto S. J . Ceram. Soc. Japan , 1998 ,106 : 242 —247
[47] Kiratzis N , Stoukides M. J . Electrochem. Soc. , 1987 , 134 (8) :1925 —1931
[48] Yentekakis I V , Vayenas C G. J . Electrochem. Soc. , 1989 , 136(4) : 996 —1002
[49] Vayenas C G. Chemtech , 1991 , 21 (7) : 422 —427
[50] Vayenas C G. Chemtech , 1991 , 21 (8) : 500 —506

[1] 赵秉国, 刘亚迪, 胡浩然, 张扬军, 曾泽智. 制备固体氧化物燃料电池中电解质薄膜的电泳沉积法[J]. 化学进展, 2023, 35(5): 794-806.
[2] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[3] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[4] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[5] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[6] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[7] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[8] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[9] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[10] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[11] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[12] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[13] 张旸, 张敏, 赵海雷. 双钙钛矿型固体氧化物燃料电池阳极材料[J]. 化学进展, 2022, 34(2): 272-284.
[14] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[15] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.