English
新闻公告
More
化学进展 2003, Vol. 15 Issue (06): 512- 前一篇   后一篇

• 综述与评论 •

从层层组装的核壳粒子到医学/生物化学诊断和药物输送*

朱以华**;杨晓玲;李培勇;胡英   

  1. (华东理工大学超细材料制备与应用教育部重点实验室 上海 200237; 上海第二医科大学附属瑞金医院核医学科 上海 200025; 华东理工大学化学系 上海 200237)
  • 收稿日期:2002-08-01 修回日期:2002-09-01 出版日期:2003-11-24 发布日期:2003-11-24
  • 通讯作者: 朱以华
  • 基金资助:

    国家自然科学基金

From Layer-by-Layer Assembled Core-Shell Particles to Medical/Biochemical Diagnostics and Drug Delivery

Zhu Yihua**;Yang Xiaoling;Li Peiyong;Hu Ying   

  1. ( Key Laboratory for Ultrafine Materials, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Department of Nuclear Medicine, Rui Jin Hospital, Shanghai No.2 Medical University, Shanghai 200025, China; Department of Chemistry, East China University of Science and Technology, Shanghai 200237, China)
  • Received:2002-08-01 Revised:2002-09-01 Online:2003-11-24 Published:2003-11-24
  • Contact: Zhu Yihua

层层组装的核壳型粒子由于具有尺度和组成的剪裁优点近年来得到了广泛的研究,它们为技术应用如医学/生物化学诊断和药物输送提供了新的机遇.本文综述了基于层层自组装和胶体模板以及采用各种化学和物理方法直接除去核制备磁性复合核壳粒子和空腔球体.给出了核壳粒子在药物输送、生物检测与标记应用的一些实例.

Layer-by-layer (LbL) assembled core-shell particles are currently studied immensely due to their advantages of tailored dimensions and compositions. They have potential technological applications in areas such as medical/biochemical diagnostics and drug delivery. In this paper, the fabrication of magnetic composite core-shell particles and hollow spheres based on LbL self-assembly and colloidal templating by direct removal of core materials using a variety of chemical and physical methods are mainly reviewed. Some specific examples on the exploitation of core-shell particles in drug delivery, bioassay and biolabeling applications are given.

中图分类号: 

()

[ 1 ] Decher G. Science, 1997, 277: 1232—1237
[ 2 ] Decher G, Hong J D. Makomol Chem. Macromol. Symp. , 1991, 46: 321—327
[ 3 ] Cassier T, Lowack K, Decher G. Supramol. Sci. , 1998, 5: 309
[ 4 ] Caruso F, Caruso R A , Mhwald H. Science, 1998, 282: 1111—1114
[ 5 ] Caruso F, Donath E, Mhwald H. J. Phys. Chem. B, 1998, 102: 2011
[ 6 ] Caruso F, Lichtenfeld H, M hwald H, et al. J. Am. Chem. Soc. , 1998, 120: 8523—8524
[ 7 ] Mhwald H. Colloid Surf. A , 2000, 171 (1/3) : 25
[ 8 ] Pastoriza-Santos I, Schler B, Caruso F. Adv. Functional Mater. , 2001, 11: 122—128
[ 9 ] Sukhorukov G, D hne L , Hartmann J , et al. Adv. Mater. , 2000, 12 (2) : 112—115
[ 10 ] Donath E, Sukhorukov G B, Caruso F, et al. Angew. Chem. Int. Ed. , 1998, 37: 2202—2205
[ 11 ] Caruso F, Schiiler C, Kurth D G. Chem. Mater. , 1999, 11: 3394—3399
[ 12 ] Uhlen M. Nature, 1989, 340: 733
[ 13 ] Wirtz D, Fermigier M. Phys. Rev. Lett. , 1994, 72: 2294—2297
[ 14 ] Mayya K S, Gittins D I, Caruso F. Chem. Mater. , 2001, 13: 3833—3836
[ 15 ] Bizdoaca E L , Spasova M , Farle M , et al. J. Magn. Magn. Mater. , 2002, 240 (1/3) : 44—46
[ 16 ] 答鸿(Da H) , 朱以华(Zhu Y) , 无机材料学报(J. Inorg. Mater. ) , 2002, 17 (4) : 867
[ 17 ] Caruso F. A dv. Mater. , 2001, 13: 11
[ 18 ] Rembaum A , Dreyer W J. Science, 1980, 208: 364
[ 19 ] Radtchenko I L , Sukhorukov G B, Mhwald H. Colloids Surfaces A , 2002, 202 (2/3) : 127
[ 20 ] Haugland R P. Handbook of Fluorescent Probes and Research Chemicals, 6th Ed. Engene, OR: Molecular Probe Inc. , 1996
[ 21 ] Caruso F, Mhwald H. J. Am. Chem. Soc. , 1999, 121: 6039—6046
[ 22 ] Caruso F, Fiedler H, Haage K. Colloids Surfaces A , 2000, 169: 287
[ 23 ] Schüler C, Caruso F. Macromol. Rapid Commun. , 2000, 21: 750—753
[ 24 ] Caruso F, Schuler C. Langmuir, 2000, 16 (24) : 9595—9603
[ 25 ] Yang W , Trau D, Renneberg R, et al. J. Colloid Interface Sci. , 2001, 234: 356
[ 26 ] Langer R. Nature, 1998, 392: 5—12
[ 27 ] Shi X Y, Caruso F. Langmuir, 2001, 17: 2036—2042
[ 28 ] Yang L , Alewandridis P. Curr. Opin. Colloid Inter. , 2000, 5: 132—143
[ 29 ] Jeong B, Bae Y H, Kim S W. J. Control. Release, 2000, 63: 155
[ 30 ] Antipov A A , Sukhorukov G B, Donath E, et al. J. Phys. Chem. B, 2001, 105 (12) : 2281—2284
[ 31 ] Qiu X P, Leporatti S, Donath E, et al. Langmuir, 2001, 17: 5557—5380
[ 32 ] Sukhorukov G B, Antipov A A , Voigt A , et al. Macromo l. Rapid Commun. , 2001, 22 (1) : 44—46

[1] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[2] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[3] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[4] 王佳佳, 吴惠英, 董任峰, 蔡跃鹏. 基于微/纳马达的智能癌症诊断、递送及治疗[J]. 化学进展, 2021, 33(5): 883-894.
[5] 刘文杰, 刘凯会, 张彦伟, 王良, 张梦裔, 李静. 糖基化在新型冠状病毒侵染中的机制及药物研发中的应用[J]. 化学进展, 2021, 33(4): 524-532.
[6] 胡子涛, 丁寅. 基于共价有机框架材料的纳米体系在生物医学中的应用[J]. 化学进展, 2021, 33(11): 1935-1946.
[7] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[8] 胡军, 姚雨竹, 敖艳肖, 杨海, 杨祥良*, 徐辉碧. 用于肿瘤综合治疗的无机纳米材料[J]. 化学进展, 2018, 30(10): 1584-1591.
[9] 宋萍, 叶德楷, 宋世平, 王丽华, 左小磊. DNA水凝胶的制备及生物应用[J]. 化学进展, 2016, 28(5): 628-636.
[10] 田亮, 姚琛, 王怡红*. 电化学生物传感应用于体外检测的研究[J]. 化学进展, 2016, 28(12): 1824-1833.
[11] 慈吉良, 康宏亮, 刘晨光, 贺爱华, 刘瑞刚. 两性离子聚合物的抗蛋白质吸附机理及其应用[J]. 化学进展, 2015, 27(9): 1198-1212.
[12] 黄笛, 项楠, 唐文来, 张鑫杰, 倪中华. 基于微流控技术的循环肿瘤细胞分选研究[J]. 化学进展, 2015, 27(7): 882-912.
[13] 李雯雯, 段忆翔. 人体呼出气分析的技术进展及其在非侵入式医学诊断方面的临床应用前景[J]. 化学进展, 2015, 27(4): 321-335.
[14] 曾峰, 潘真真, 张梦, 黄永焯, 崔彦娜, 徐勤. 有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用[J]. 化学进展, 2015, 27(10): 1356-1373.
[15] 范霄, 李艳艳, 刘迎亚, 曹昌盛, 李海涛. 单分子荧光技术在端粒和端粒酶研究中的应用[J]. 化学进展, 2014, 26(12): 1987-1996.