English
新闻公告
More
化学进展 2003, Vol. 15 Issue (02): 81-   后一篇

• 综述与评论 •

在非平衡态热力学的基础上探索建立催化理的新途径

吴越*;杨向光   

  1. (中国科学院长春应用化学研究所 长春 130022)
  • 收稿日期:2002-07-01 修回日期:2002-09-01 出版日期:2003-03-24 发布日期:2003-03-24
  • 通讯作者: 吴越

ploring New Route for Establishing the Theory of Catalysis on the Basis of Non-Equilibrium Thermodynamics

Wu Yue*;Yang Xiangguang   

  1. (Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022, China)
  • Received:2002-07-01 Revised:2002-09-01 Online:2003-03-24 Published:2003-03-24
  • Contact: Wu Yue
平衡态热力学一直被认作多相催化理论的基石之一。但是,它并不能概括工作中的催化剂的状态和行为,这主要是这里还发生一些非平衡过程。催化体系常常处于非平衡状态之下,而非平衡态条件下体系状态和行为,同时取决于体系的动力学和热力学。联系动力学和热力学最一般的关系式并非原来的De Donder不等式:Ar≥0,而是新的De Donde方程ln r^-/r^-=A/RT。同时发生的总反应之间的热力学耦合对总反应的作用只是形式上的,远不及催化反应链中各基元步骤之间在动力学上的耦合那么重要。通过在动力学方程中引入反应亲和力(热力学位)得到的动力学-热力学结合近似分析,可以用来分析非平衡态的催化反应和催化剂状态。非平衡态热力学在建立多相催化理论中,较之原来的平衡态热力学将能提供更能采纳的和更有意义的物理化学背景。
Conventional equilibrium thermodynamics has long been recognized as one of the most important cornerstone of the theory of heterogeneous catalysis, but it is not suited quite well to generalize the state and behavior of operating catalysts. It is principally to see that there are non-equilibrium processes involved. The catalytic system exits always in thermodynamically non-equilibrium state under which the state and behavior of the system depend upon both kinetics and thermodynamics. It is argued that the most general useful relation, relating kinetics and thermodynamics, is not the De Bonder inequality Ar≥,but the new equation of De Donde In r/r =A/R7\ What matter is not so much for theformal thermodynamic coupling between simultaneous overall reactions, but the kinetic coupling between the elementary processes of a catalytic sequence . By introducing the notion of chemical potential into the analysis of dynamic chemical phenomena, a joint kinetic-thermodynanmic approach allows one to analysis both catalytic reaction and non-equilibrium state of catalyst. Perspectively, the role of non-equilibrium thermodynamics in creating physic-chemical background for heterogeneous catalysis is in fact much more embracing and interesting than that given by conventional equilibrium thermodynamics.

中图分类号: 

()

[ 1 ] 吴越. 催化化学(上下册). 北京: 科学出版社. 1998
[ 2 ] 李如生. 非平衡态热力学和耗散结构. 北京: 清华大学出版社. 1986
[ 3 ] Parmon V N. Catal. Today, 1999, 51: 435—456
[ 4 ] prigogine I. Introduction to Thermodynamics of Irreversible Processes 3rd Ed. New York: Interscience Pub.1957
[ 5 ] Imbih l R, Ertl G. Chem. Rev. 1995, 95 (3) : 697
[ 6 ] Shitz E, Hartmann N , Kerrekidis Y, Imbihl R. Faraday Discuss, 1996, 105: 47
[ 7 ] Mertens F, Schwegmann S. Imbihl R. J. Chem. Phys. ,1997, 106: 4319
[ 8 ] Khrustova N , MichailovA S, Imbihl R. J. Chem. Phys. ,1997, 107: 2096
[ 9 ] Donder Th De. L ’Affinite. Paris: Gauther Villars, 1927,43
[ 10 ] Prigogine I, Defay R. Chemical Thermodynamics. London: Longman Green. 1954, 38—42, 262
[ 11 ] Семенов Н Н. О Некоторых пролдемах Хuм КuH. иРеакционнойСпосоR ностиизд. АН, 1958, 415—420
[ 12 ] Dowden D A. Catalysisvo l 3. (eds. Kemball C, Dowden D A ) London: the Chemical Society, 1980. 137
[ 13 ] Batist P A , Kapteijns C J , Plippens B C, Schuit G C A. J.Catal. , 1967, 7: 33—49
[ 14 ] Boudart M. Ind. Eng. Chem. Fundamentals, 1986, 25 (1) :70—92
[ 15 ] Horiuti J , Nakamura T. A dv. Catal. Rel. Subj. , 1967,17: 38
[ 16 ] Temkin M I. Adv. Ctal. Rel. Subj. , 1979, 28: 173—291
[ 17 ] Sormorjai G A. Surface Chemistry and Catalysis. New York: Wiley. 1994
[ 18 ] Kinakarova O V , Yuriiev T M , Kustova G N , Ziborov A B, et al. Kinet. Catal. , 1993, 34: 81
[ 19 ] Nicolis G, Prigogine I. Self-organization in Non Equilibrium System. New York: Wiley. 1971
[ 20 ] ЭRлингВ. ОбрaзованиеструктурприНеобртивныхПроцессах.МOCKBA: u?g. Мир, 1979. 271
[ 21 ] Murry J D. Mathematical Biology. Berlin: Springer 1990
[ 22 ] Glassdorf P, Prigogine I. Thermodynamics Theory & Structure, Stability and Fluctuation. New York: Wiley InterScience. 1971
[ 23 ] Prigogine I. From being to becoming W. H. Freeman and Comp. San Francisco. 1980
[ 24 ] May R M. Stability and complexity in model Ecosystem.Princeton University Press. 1973
[ 25 ] ПисаржевскииЛВ. избранныеТрудывобластиКатализКиев.изаАНУССР. 1955 С218231, 66—80
[ 26 ] Ertl G, Norton P, Rustig R J. Phys. Rev. Lett. , 1982,49 (2)
[ 27 ] Keverekidis L , Schimidt L P, Aris R. U зь. AHcccp.Cep. Xu M. 1984, 32 (1) : 151—167
[ 28 ] БарелкоВВ, КурьнгкоИИ, МержанновИГД. АНСССР1976, 229 (4) : 898—701; Кин. иКат. 1976, 17 (3) : 683—690
[ 29 ] Cox M P, Ertl G, Inbihl R. Phys. Rev. Lett. , 1985, 54(15)
[ 30 ] Eiswirth M , W etzel M P, et al. J. Chem. Phys. , 1989,90 (1) : 510—521
[ 31 ] Davis W. Phil. Mag. , 1974, 17 (2) : 283—290
[ 32 ] Всесоюзн Т Р. Конф. поМеханизму ГетрегенноКаталич.PeaкцийМосква9213 ? 1970 Иnрnеринт
[ 33 ] OKunev A G, Parmon V N. Kinet. Catal. , 1997, 38: 544
[ 34 ] Mills I, Critas T, Homann K, Kallay N , Kuchisu K.Quantities Units and Symbols in Physical Chemistry. Oxford: Blackwell. 1993, 46
[ 35 ] Van-Rysselberghe P. J. Chem. Soc. , 1958, 29: 640
[ 36 ] Wei J. J. Chem. Phys. , 1962, 36: 1578
[ 37 ] Yelokhim V I, Yablensky G S. in Perspective in Catalysis( eds. Thomas T M , Zamarasb K I). Oxford: IOPAC/Blackwell, 1991. 191

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[4] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[5] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[6] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[7] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[8] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[9] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[10] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[11] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[12] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[13] 张荡, 王曦, 王磊. 生物酶驱动的微纳米马达在生物医学领域的应用[J]. 化学进展, 2022, 34(9): 2035-2050.
[14] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[15] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.