English
新闻公告
More
化学进展 2003, Vol. 15 Issue (01): 9- 前一篇   后一篇

• 综述与评论 •

质量、热量传递过程中的Marangoni效应*

沙勇 成弘** 余国琮   

  1. (天津大学化学工程研究所 天津 300072)
  • 收稿日期:2002-02-01 修回日期:2002-07-01 出版日期:2003-01-24 发布日期:2003-01-24
  • 通讯作者: 成弘

Marangoni Effect in the Mass and Heat Transport Processes*

Sha Yong;Cheng Hong**;Yu Guozong   

  1. (Chemical Engineering Research Center,Tianjin University, Tianjin 300072)
  • Received:2002-02-01 Revised:2002-07-01 Online:2003-01-24 Published:2003-01-24
  • Contact: Cheng Hong
由质量、热量传递引发,表面张力梯度驱动的Marangoni效应不但对化学工程、材料工程和热能工程等领域里的一系列过程具有重要的影响,而且具有非线性耗散系统理论研究的一个具有实际意义的课题。对Marangoni效应的实验及理论研究有助于增进对微观传热、传质机理的理解,它的合理利用也可以提高某些过程的效率。迄今为止,对Marangoni效应的认识还不能满足理论研究和工程应用的要求。按期在各相关领域内对Marangoni的研究十分活跃,本文回顾了这些研究成果。
Marangoni effect accompanied with heat and mass transport processes has important influence on chemical engineering ,material engineering ,thermal engineering and other fields .it is also an ideal problem in nonlinear science .The experimental and theoretical studies on Marangoni effect can not only promote the understanding of miocrocosmic mechanism of heat and mass transfer ,but also improve the efficiency of transport processes .However ,up to the present ,one's knowledge on Marangoni effect is still insufficient to meet the need of both theory and practice .Recently ,the research in this area is very active .This paper reviews the experimental and theoretical studies on Marangoni effect.

中图分类号: 

()

[ 1 ] Scriven L E, Sternling C V. Nature, 1960, 187: 186—188
[ 2 ] Sherwood T K, Pigford R L , Wilke C R. Mass Transfer.New York: McGraw Hill, 1975. 184—188
[ 3 ] Boyadjiev C. Int. J. Heat Mass Transfer, 2000, 43:2749—2757
[ 4 ] Hozawa M , Inoue M , Sato J. J. Chem. Eng. Japan,1991, 24: 209—214
[ 5 ] Whiffin P A C, Bruton T M , Brice J C. J. Crystal Growth, 1976, 32: 205—217
[ 6 ] 雷永平(Lei Y P ) , 史耀武(Shi Y W ) , 村川英一(Murakawa H). 西安交通大学学报(J. Xi‘an Jiaotong Univ. ) ,1999, 33: 70—74
[ 7 ] Sharma A , Ruckenstein E. J. Colloid Interface Sci. ,1986, 111: 8—36
[ 8 ] Lyford P A , Pratt H R C, Griesen F, et al. Canadian J. of Chem. Eng. , 1998, 76: 167—182
[ 9 ] Pantaloni J , Bailleux R, Salan J , Velarde M G. J. Non-Equilibrium Thermodynam ics, 1979, 4: 201—217
[ 10 ] Koschmieder E L , Prahl S A. J. Fluid Mech. , 1990, 240:571—583
[ 11 ] Schwabe D. Adv. Space Res. , 1999, 24: 1347—1356
[ 12 ] Szymczyk J A. The Canadian J. Chem. Eng. , 1991, 69:1271—1276
[ 13 ] Zhang N , Chao D F. Int. Comm. Heat Mass Transfer,1999, 26: 1069—1080
[ 14 ] Orell A , Westwater J W. AIChE J. , 1962, 8: 350—356
[ 15 ] Imaish i N , Fujinawa K. Intern. Chem. Eng. , 1980, 20:226—232
[ 16 ] Suciu D G, Smigelschi O, Buckenstein E. AIChE J. ,1967, 13: 1120—1124
[ 17 ] Zhang S H, Wang Z M , Su Y F. Trans. IChemE. , 1990,68: 84—92
[ 18 ] Okhotsimskii A , Hozawa M. Chem. Eng. Sci. , 1998, 53:2547—2573
[ 19 ] Agble D, Mendes-Tatsis M A. Int. J. Heat Mass Transfer, 2001, 44: 1439—1449
[ 20 ] Brian P L T, Vivian J E, Mayr S T. Ind. Eng. Chem.Fundam. , 1971, 10: 75—83
[ 21 ] Imaishi N , Suzuki Y, Hozawa M , Fujinawa K. Intern.Chem. Eng. , 1982, 22: 659—665
[ 22 ] Lu H H, Yang Y M , Ma J R. Ind. Eng. Chem. Res. ,1996, 35: 1921—1928
[ 23 ] Tan K K, Thorpe R B. Chem. Eng. Sci. , 1992, 47:3565—3572
[ 24 ] Straub J. Exp. Thermal Fluid Sci. , 1994, 9: 253—273
[ 25 ] Kapur D N , Macleod N. Int. J. Heat Mass Transfer,1974, 17: 1151—1162
[ 26 ] Guzun-Stoica A , Kurzeluk A M , Floarea O. Chem. Eng.Sci. , 2000, 55: 3813—3816
[ 27 ] Agble D, Mendes-Tatsis M A. Int. J. Heat Mass Transfer, 2000, 43: 1025—1034
[ 28 ] Nield D A. J. Fluid Mech. , 1964, 19: 341—352
[ 29 ] Dupont O , Hennenberg M , Legros J C. Int. J. Heat Mass Transfer, 1992, 35: 3237—3244
[ 30 ] 葛培文(Ge P W ) , 西永颂(Xi Y S) , 李超荣(Li C R) 等.中国科学(A 辑) (Science in China, series A ) , 2001, 31:56—58
[ 31 ] Gelles S H, Markworth J. 15th AJAA Conf. , Los Angeles, 1977
[ 32 ] 张修睦( Zhang X M ) , 唐泽眉( Tang Z M ). 物理(Physics) , 1998, 27: 478—482
[ 33 ] Hibiya T, Nakamura S. Adv. Space Res. , 1999, 24:1225—1230
[ 34 ] Block M J. Nature, 1956, 178: 650—658
[ 35 ] Pearson J R A. J. Fluid Mech. , 1958, 4: 489—500
[ 36 ] Hovestreijdt J. Chem. Eng. Sci. , 1963, 18: 631—639
[ 37 ] Abe Y, Oka T, Mori Y. Int. J. Heat Mass Transfer,1994, 37: 2405—2413
[ 38 ] Chai L H, Peng X F, Wang B X, Ochterbeck J M. Int. J.Heat Mass Transfer, 1998, 41: 3529—3535
[ 39 ] 文东升(Wen D S) , 王补宣(Wang B X) , 彭晓峰(Peng X F ). 清华大学学报(自然科学版) ( J. Tsinghua Univ. )(Sci. Tech. ) , 2001, 41: 128—130
[ 40 ] Christopher D M , Wang B X. Int. J. Heat Mass Transfer, 2001, 44: 799—810
[ 41 ] Lewis J B, Pratt H R C. Nature, 1953, 171: 1155—1156
[ 42 ] Bakker C A P. van Buytenen P M , Beek W J. Chem.Eng. Sci. , 1966, 21: 1039—1046
[ 43 ] Davies G A , Thornton J D. Letters in Heat and Mass Transfer, 1977, 4: 287—290
[ 44 ] Perezde Ortiz E S, Sawistowski H. Chem. Eng. Sci. ,1973, 28: 2063—2069
[ 45 ] Sherwood T K, Wei J C. Indus. Eng. Chemistry, 1957,49: 1030—1034
[ 46 ] Maroudas N G, Sawistowski H. Chem. Eng. Sci. , 1964,19: 919—931
[ 47 ] Mudge L K, Heideger W J. AIChE J. , 1970, 16: 602—608
[ 48 ] Liang T B, Slater M J. Chem. Eng. Sci. , 1990, 45: 97—105
[ 49 ] Bennett D E, Gallardo B S, Abbott N L. J. American Chem. Society, 1996, 118: 6499—6505
[ 50 ] Zuiderweg F J. Chem. Eng. Res. Des. , 1983, 61: 388—390
[ 51 ] Dijkstra H A , Drinkenburg A A H. Chem. Eng. Sci. ,1990, 45: 1079—1088
[ 52 ] Pertler M , Haberl M , Rommel W , Blass E. Chem. Eng.& Proc. , 1995, 34: 269—278
[ 53 ] Proctor S J , Biddulph M W , Krishnamurthy K R. A IChE J. , 1998, 44: 831—835
[ 54 ] Vander Klooster H W , Drinkenburg A A H. I. Ch. E.Symp. Ser. , 1979, 56: 25—28
[ 55 ] Semkov K R, Kolev N. Chem. Eng. & Proc. , 1991, 29:77—83
[ 56 ] Matin A M , Perez A C. Intern. Chem. Eng. , 1994, 34:76—81
[ 57 ] Golovin A A. Chem. Eng. Sci. , 1992, 47: 2069—2080
[ 58 ] Warmuzinski K, Buzek J. Chem. Eng. Sci. , 1990, 45:243—254
[ 59 ] Misko I G, Garber Yu N. J. Appl. Chem. , 1989, 62:84—88
[ 60 ] Golovin A A , Rabinovich L M. ISEC288 (2) , 1988, 97—100
[ 61 ] Golovin A A , Rabinovich L M. Theor. Osnovi Khim.Technol. , 1990, 24: 592—610
[ 62 ] Fujinawa K, Hozawa M , Imaishi N. J. Chem. Eng.Japan, 1978, 11: 107—111
[ 63 ] Olander D R, Reddy L B. Chem. Eng. Sci. , 1964, 19:67—73
[ 64 ] Sawistowski H, Goltz G E. Trans. Instn. Chem. Engrs. ,1963, 41: 174—181
[ 65 ] Kaminsky V A K, Vyaz’min A V , Kulov N N , et al.Chem. Eng. Sci. , 1998, 53: 3347—3353
[ 66 ] Sternling C V , Scriven L E. AIChE J. , 1959, 5: 514—523
[ 67 ] Brian P L T. AIChE J. , 1971, 17: 765—772
[ 68 ] Kang K H, Choi C K, Hwang I G. AIChE J. , 2000, 46:15—23
[ 69 ] Mendes-Tatsis M A , Perez De Ortiz E S. Chem. Eng.Sci. , 1996, 51: 3755—3761
[ 70 ] Warmuzinsk i K, Tanczyk M. Chem. Eng. Sci. , 1995,50: 3521—3524
[ 71 ] Daiguji H, Hihara E, Saito T. Int. J. Heat Mass Transfer, 1997, 40: 1743—1752
[ 72 ] Scanlon J M , Segel L A. J. Fluid Mech. , 1967, 30:149—162
[ 73 ] Cloot A , Lebon G. J. Fluid Mech. , 1984, 145: 447—469
[ 74 ] Bestehorn M. Phys. Rev. E, 1993, 48: 3622—3634
[ 75 ] Hadji L , Safar J , Schell M. J. Non-Equilib. Thermodyn. , 1991, 16: 343—356
[ 76 ] Golovin A A , Nepomnyashchy A A , Pismen L M. Physica D, 1995, 81: 117—147
[ 77 ] Bragard J , Slavtchev S G, Lebon G. J. Colloid Interface Sci. , 1994, 168: 402—413
[ 78 ] Ho K L , Chang H C. AIChE J. , 1988, 34: 705—722
[ 79 ] Sun Z F, Wang S Y, Yu K T. ISTCE I , 1988, 599—608
[ 80 ] Boyadjiev C, Halatchev I. Int. J. Heat Mass Transfer,1998, 41: 197—202
[ 81 ] 唐泽眉(Tang Z M ) , 李家春(Li J C). 力学学报(Acta Mechanica Sinica) , 1991, 23: 149—156
[ 82 ] Galazka Z, Wilke H. J. Crystal Growth, 2000, 216:389—398
[ 83 ] Bestehorn M , Colinet P. Phys. D, 2000, 145: 84—109

[1] 蒋茹, 刘晨旭, 杨平, 游书力. 手性催化与合成中的一些凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1537-1547.
[2] 潘志君, 庄巍, 王鸿飞. 凝聚态化学研究中的动力学振动光谱理论与技术[J]. 化学进展, 2020, 32(8): 1203-1218.
[3] 毛庆*, 景维云, 石越. 非线性谱学分析的基本原理及其在电化学研究中的应用[J]. 化学进展, 2017, 29(2/3): 210-215.
[4] 袁玲, 刘洋, 杨涛, 刘海苗, 高庆宇. 硫化学反应体系中的振荡与斑图形成[J]. 化学进展, 2014, 26(04): 529-544.
[5] 孙亮, 杨春晖, 马天慧, 朱崇强. 非线性光学晶体LiBX2(B=Ga, In; X=S, Se, Te)的研究[J]. 化学进展, 2014, 26(0203): 293-302.
[6] 程龙, 吕晓锋, 李铭, 张琳, 侯红卫. 功能配合物三阶非线性光学性能的研究[J]. 化学进展, 2013, 25(10): 1625-1630.
[7] 宋建, 庄巍*. 蛋白质二维红外相干光谱的理论研究[J]. 化学进展, 2012, 24(06): 1065-1081.
[8] 林晨升, 程文旦*, 张炜龙, 张浩, 何长振. 物质材料的结构预测和光物理性能模拟[J]. 化学进展, 2012, 24(06): 1185-1198.
[9] 闫燕, 杨启炜, 邢华斌*, 苏宝根, 任其龙. 离子液体表/界面性质与结构[J]. 化学进展, 2012, 24(05): 659-673.
[10] 路兴杰, 赵跃民, 任林, 杨莹莹, 高庆宇*. 光敏性BZ反应的时空动力学[J]. 化学进展, 2012, 24(05): 709-721.
[11] 李倩倩, 李振, 秦金贵. 新型含吲哚基团的光电功能材料*[J]. 化学进展, 2009, 21(12): 2578-2588.
[12] 罗绍华,武聪,田勇. 非铁电巨介电压敏材料CCTO*[J]. 化学进展, 2009, 21(0708): 1603-1610.
[13] 陈伟锋,史壮志,袁宇,颜朝国. 不对称自催化反应[J]. 化学进展, 2007, 19(04): 456-463.
[14] 侯中怀,辛厚文. 介观化学体系中的动力学尺度效应*[J]. 化学进展, 2006, 18(0203): 142-158.
[15] 柴立和. 多尺度科学的研究进展*[J]. 化学进展, 2005, 17(02): 186-191.