English
新闻公告
More
化学进展 DOI: 10.7536/PC240121   

• •

基于微流控芯片的体外血管网络模型的研究进展

王芳田1, 赵亮1, 郭广生1,2, 汪夏燕1,*   

  1. 1.北京工业大学,环境安全与生物效应卓越中心,化学与生命科学学院,化学系,北京, 100124;
    2.中央民族大学,北京, 100081
  • 收稿日期:2024-01-24 修回日期:2024-02-26
  • 通讯作者: Email: xiayanwang@bjut.edu.cn
  • 基金资助:
    国家自然科学基金项目( No. 22174007, 22127805) ,研究生培养相关经费-环境与生命学部-培育基金(049000513203),和北京市卓越青年科学家项目( BJJWZYJH01201910005017) 资助

Microfluidic-based vasculatures on chip: methods and recent progress

Fangtian Wang1, Liang Zhao1, Guangsheng Guo1,2, Xiayan Wang1,*   

  1. 1. Center of Excellence for Environmental Safety and Biological Effects, College of Chemistry and Life Science, Department of Chemistry, Beijing University of Technology, Beijing, 100124, China;
    2. Minzu University of China, Beijing, 100081, China
  • Received:2024-01-24 Revised:2024-02-26
  • Contact: *e-mail: xiayanwang@bjut.edu.cn
  • Supported by:
    National Natural Science Foundation of China (No. 22174007 and 22127805), the Cultivating Fund of Faculty of Environment and Life (049000513203), and the Beijing Outstanding Young Scientist Program (BJJWZYJH01201910005017)
血管是人体维持器官特定功能和调节体内稳态的重要生理系统。随着组织工程技术和微流控技术的不断发展,基于微流控芯片技术的体外微血管系统已经成为生物医学工程领域重要的在体外重构血管模型的手段,为基础研究和转化医学研究提供了新的工具。微流控技术弥补了传统体外血管模型存在的缺陷,具有巨大的应用潜力。本综述中,我们总结和讨论了微流控体外血管模型的主要构建方法以及各种方法的异同点,为建立更加可靠的体外血管系统模型提供参考。我们也探讨了在这些体外微血管模型的构建过程中,微流控技术所起到的决定性作用和其独特的优势。
Microvasculature-on-a-chip, utilizing microfluidic technology, has emerged as a significant in vitro tool for simulating both the normal and disease states of blood vessel networks. In our review, we highlight the efficacy of microfluidic platforms in accurately reproducing the microenvironment of human blood vessels. We outline a range of methodologies employed to fabricate vascular networks in vitro, focusing on the use of endothelial cells within microfluidic structures. For each method, we provide an assessment of recent examples, critically evaluating their strengths and drawbacks. Furthermore, we delve into the outlook and the innovative advancements anticipated for next-generation vascular-on-a-chip models and the broader field of chip-based tissue engineering.
()
No related articles found!