English
新闻公告
More
化学进展 DOI: 10.7536/PC240105 前一篇   后一篇

• •

纳米材料表面化学作用之电子结构原理

相国磊   

  1. 北京化工大学化学学院 北京 100029
  • 收稿日期:2024-01-08 修回日期:2024-03-11
  • 作者简介:相国磊 北京化工大学化学学院副教授。2008年毕业于北京化工大学理科实验班;研究生于清华大学化学系师从王训教授学习纳米材料合成方法学,2014年获理学博士学位。2014-2017年于剑桥大学化学系Oren Scherman课题组开展博士后工作。2017年加入北京化工大学,致力于探索纳米材料表界面化学作用电子结构机制的实验解析方法与理论模型,以深度理解纳米尺度表界面作用的底层物理与化学原理。提出了表面价轨道竞争重构、轨道势、纳米尺度协同化学吸附及π状态纵向极化等概念与理论。
  • 基金资助:
    国家自然科学基金项目(No. 21801012)资助

The Electronic Principles of Nanomaterial Surface Chemistry

Guolei Xiang   

  1. College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China
  • Received:2024-01-08 Revised:2024-03-11
  • Contact: *e-mail: xianggl@buct.edu.cn
  • Supported by:
    National Natural Science Foundation of China (No. 21801012).
在电子结构层面揭示纳米材料表面化学作用的物理与化学机制、共性规律与普适原理是纳米材料相关领域基础研究的最基本科学目标,然而由于缺乏成熟的研究策略和系统性认知框架,相关概念与理论体系长期不完善,导致纳米化学领域的理论认识远远落后于实验探索。本文基于作者近年研究成果,介绍基于表面价轨道竞争重构机制的纳米材料表面化学作用电子结构层面概念与理论框架。基于表面吸附电子态与纳米材料能带态间的相互作用与相互影响模型,对纳米材料表面化学领域的一些代表性共性科学问题作出自洽回答:(1) 阐明了纳米材料表面活性与稳定性的对立统一关系源于波函数归一化原理;(2) 揭示出尺寸减小增强纳米材料表面化学活性的物理根源有两种机制,一是削弱对表面价原子轨道的束缚强度,二是放大缺陷等其他结构参数的影响效果;(3) 纳米尺度协同化学吸附(NCC)模型揭示出配体覆盖度调控纳米材料能带电子态及物理与化学性质的电子结构层面机制与共性规律;(4) 阐明了纳米材料尺寸(r)、比表面积(S/V)、表面配体及覆盖度(θ)在纳米表面化学作用中的作用与机制。
Revealing the intrinsic electronic principles driving the surface chemistry of nanomaterials is a central goal in nanoscience; however, the concepts and theoretical frameworks have long remained incomplete and unsystematic. This review systematically introduces a theoretical framework to reveal the interaction mechanisms and trends of surface ligands with nanomaterials at the electronic level, on the basis of competitive orbital redistribution in chemisorption and a concept of orbital potential, the characteristic electronic attribute directly determining surface reactivity. Based on the competitive interactions between surface coordination bonds and bulk energy bands, this theoretical framework can provide coherent answers to these key scientific issues. (1) The opposite and uniform relation of surface activity and stability in nanomaterials originates from the normalization principle of wavefunctions. (2) The physical nature of enhanced surface activity by size reduction lies in two mechanisms: weakening the constrain strength to surface valence atomic orbitals by nanomaterial energy bands, and amplifying the effects of other structural parameters like defects. (3) Nanoscale cooperative chemisorption (NCC) model generally reveals the electronic-level mechanisms and common rules how ligand coverage regulates the energy band states and physical/chemical properties of nanomaterials. (4) The roles and interaction mechanisms of nanomaterial size (r), specific surface area (S/V), surface ligands, and ligand coverage (θ) in nanomaterial surface chemical reactions are elucidated.
()
[1] Scholl, J. A., Koh, A. L.& Dionne, J. A.Nature, 2012, 483: 421.
[2] Volokitin, Y., Sinzig, J., de Jongh, L. J., Schmid, G., Vargaftik, M. N. & Moiseevi, I. I.Nature, 1996, 384: 621.
[3] Buffat P.& Borel, J. P.Phys. Rev. A, 1976, 13: 2287.
[4] Roduner E.Chem. Soc. Rev., 2006, 35: 583.
[5] Kagan C. R., Lifshitz E., Sargent, E. H. & Talapin, D. V. Science,2016, 353: aac5523.
[6] Boles M. A., Ling D., Hyeon T.& Talapin, D. V.Nat. Mater., 2016, 15: 141.
[7] Heuer-Jungemann, A., Feliu, N., Bakaimi, I., Hamaly, M., Alkilany, A., Chakraborty, I., Masood, A., Casula, M. F., Kostopoulou, A., Oh, E., Susumu, K., Stewart, M. H., Medintz, I. L., Stratakis, E., Parak, W. J. & Kanaras, A. G.Chem. Rev., 2019, 119: 4819.
[8] Guo Y. Q., Xu K., Wu C. Z., Zhao J. Y.& Xie, Y.Chem. Soc. Rev., 2015, 44: 637.
[9] Yang F., Deng D. H., Pan X. L., Fu Q.& Bao, X. H.Natl. Sci. Rev., 2015, 2: 183.
[10] Valden, M., Lai, X.& Goodman, D. W.Science, 1998, 281: 1647.
[11] Zhang Y., Cui X. J., Shi F.& Deng, Y. Q.Chem. Rev., 2012, 112: 2467.
[12] Wang G., Huang T., Murray R. W., Menard L.& Nuzzo, R. G.J. Am. Chem. Soc., 2005, 127: 812.
[13] Wu Z. K.& Jin, R. C.Nano Lett., 2010, 10: 2568.
[14] Crawford S. E., Andolina C. M., Smith A. M., Marbella L. E., Johnston K. A., Straney P. J., Hartmann M. J.& Millstone, J. E.J. Am. Chem. Soc., 2015, 137: 14423.
[15] Kalyuzhny G.& Murray, R. W.J. Phys. Chem. B, 2005, 109: 7012.
[16] Munro A. M.,Jen-La Plante, I., Ng, M. S. & Ginger, D. S.J. Phys. Chem. C, 2007, 111: 6220.
[17] Anderson N. C., Hendricks M. P., Choi J. J.& Owen, J. S.J. Am. Chem. Soc., 2013, 135: 18536.
[18] Li J. H., Xu L. M., Wang T., Song J. Z., Chen J. W., Xue J., Dong Y. H., Cai B., Shan Q. S., Han B. N.& Zeng, H. B.Adv. Mater., 2017, 29: 1603885.
[19] Song J. Z., Fang T., Li J. H., Xu L. M., Zhang F. J., Han B. N., Shan Q. S.& Zeng, H. B.Adv. Mater., 2018, 30.
[20] Ohta T., Shibuta M., Tsunoyama H., Negishi Y., Eguchi T.& Nakajima, A. J. Phys. Chem. C, 2013, 117: 3674.
[21] Liu J. B., Duchesne P. N., Yu M. X., Jiang X. Y., Ning X. H., Vinluan R. D., Zhang P.& Zheng, [J].Angew. Chem. Int. Ed., 2016, 55: 8894.
[22] Jin R.& Higaki, T.Commun. Chem., 2021, 4: 28.
[23] Mitchell S., Qin R. X., Zheng N. F.& Perez-Ramirez, [J].Nat. Nanotechnol., 2021, 16: 129.
[24] Hartley, C. L., Kessler, M. L.& Dempsey, J. L.J. Am. Chem. Soc., 2021, 143: 1251.
[25] Xue, J. J., Wang, R.& Yang, Y.Nat. Rev. Mater., 2020, 5: 809.
[26] Liu P. X., Qin R. X., Fu G.& Zheng, N. F.J. Am. Chem. Soc., 2017, 139: 2122.
[27] Owen J.Science, 2015, 347: 615.
[28] Kroupa D. M., Voros M., Brawand N. P., McNichols, B. W., Miller, E. M., Gu, J., Nozik, A. J., Sellinger, A., Galli, G. & Beard, M. C.Nat. Commun., 2017, 8: 15257.
[29] Reimann S. M.& Manninen, M.Rev. Mod. Phys., 2002, 74: 1283.
[30] Chen G. X., Xu C. F., Huang X. Q., Ye J. Y., Gu L., Li G., Tang Z. C., Wu B. H., Yang H. Y., Zhao Z. P., Zhou Z. Y., Fu G.& Zheng, N. F.Nat. Mater., 2016, 15: 564.
[31] Schauermann S., Nilius N., Shaikhutdinov S.& Freund, H. [J].Acc. Chem. Res., 2013, 46: 1673.
[32] Green M. L.H. & Parkin, G.J. Chem. Educ., 2014, 91: 807.
[33] Green M. L.H.J. Organomet. Chem., 1995, 500: 127.
[34] Zherebetskyy D., Scheele M., Zhang Y. J., Bronstein N., Thompson C., Britt D., Salmeron M., Alivisatos P.& Wang, L. W.Science, 2014, 344: 1380.
[35] Pang Z. F., Zhang J., Cao W. C., Kong X. Q.& Peng, X. G.Nat. Commun., 2019, 10: 2454.
[36] Kang X. W., Zuckerman N. B., Konopelski J. P.& Chen, S. W. J. Am. Chem.Soc, 2012, 134: 1412.
[37] Rodriguez, P., Kwon, Y.& Koper, M. T. M.Nat. Chem., 2012, 4: 177.
[38] Yavuz C. T., Mayo J. T., Yu W. W., Prakash A., Falkner J. C., Yean S., Cong L., Shipley H. J., Kan A., Tomson M., Natelson D.& Colvin, V. L.Science, 2006, 314: 964.
[39] Chen Y. T., Yang T. Q., Pan H. F., Yuan Y. F., Chen L., Liu M. W., Zhang K., Zhang S. J., Wu P.& Xu, J. H.J. Am. Chem. Soc., 2014, 136: 1686.
[40] Fan X., Zerebecki S., Du R., Hubner R., Marzum G., Jiang G., Hu Y., Barcikowki S., Reichenberger S.& Eychmuller, A.Angew. Chem. Int. Ed., 2020, 59: 5706.
[41] Kwon S. G., Krylova G., Sumer A., Schwartz M. M., Bunel E. E., Marshall C. L., Chattopadhyay S., Lee B., Jellinek J.& Shevchenko, E. V.Nano Lett., 2012, 12: 5382.
[42] Kahsar, K. R., Schwartz, D. K.& Medlin, J. W. J. Am. Chem. Soc., 2014, 136: 520.
[43] Schoenbaum, C. A., Schwartz, D. K.& Medlin, J. W.Acc. Chem. Res., 2014, 47: 1438.
[44] Lari G. M., Puertolas B., Shahrokhi M., Lopez N.& Perez-Ramirez, [J].Angew. Chem. Int. Ed., 2017, 56: 1775.
[45] Xiang G. L., Wu D., He J.& Wang, X.Chem. Commun., 2011, 47: 11456.
[46] Ma S., Zhao W., Zhou J., Wang J., Chu S., Liu Z.& Xiang, G.Chem. Sci., 2021, 12: 4411.
[47] Frederick, M. T., Amin, V. A.& Weiss, E. A. J. Phys. Chem. Lett., 2013, 4: 634.
[48] Frederick M. T.& Weiss, E. A.ACS Nano, 2010, 4: 3195.
[49] Ip A. H., Thon S. M., Hoogland S., Voznyy O., Zhitomirsky D., Debnath R., Levina L., Rollny L. R., Carey G. H., Fischer A., Kemp K. W., Kramer I. J., Ning Z. J., Labelle A. J., Chou K. W., Amassian A.& Sargent, E. H.Nat. Nanotechnol., 2012, 7: 577.
[50] Qin R. X., Liu K. L., Wu Q. Y.& Zheng, N. F.Chem. Rev., 2020, 120: 11810.
[51] 秦瑞轩, 邓果诚& 郑南峰.化学进展, 2020, 32: 1140.
[52] Xiang G. L.& Wang, Y. G.Nano Res., 2022, 15: 3812.
[53] Hoffmann R.Angew. Chem. Int. Ed., 1987, 26: 846.
[54] Anderson P. W.Phys. Rev., 1961, 124: 41.
[55] Newns D. M.Phys. Rev., 1969, 178: 1123.
[56] Weinberg W. H. J. Vac. Sci. Technol., 1973, 10: 89.
[57] Shustorovich E.& Baetzold, R. C.Science, 1985, 227: 876.
[58] Hoffmann R.Rev. Mod. Phys., 1988, 60: 601.
[59] Kaden W. E., Wu T. P., Kunkel W. A.& Anderson, S. L.Science, 2009, 326: 826.
[60] Halperin W. P.Rev. Mod. Phys., 1986, 58: 533.
[61] Kubo R.J. Phys. Soc. Jpn. , 1962, 17: 975.
[62] Walter M., Akola J., Lopez-Acevedo, O., Jadzinsky, P. D., Calero, G., Ackerson, C. J., Whetten, R. L., Gronbeck, H. & Hakkinen, H.Proc. Natl. Acad. Sci. USA, 2008, 105: 9157.
[63] Cossairt B. M.& Owen, J. S.Chem. Mater., 2011, 23: 3114.
[64] Efros A. L.& Brus, L. E.ACS Nano, 2021, 15: 6192.
[65] Lundqvist B. I., Gunnarsson O., Hjelmberg H.& Norskov, J. K.Surf. Sci., 1979, 89: 196.
[66] Chakhalian J., Freeland J. W., Habermeier H. U., Cristiani G., Khaliullin G., van Veenendaal, M. & Keimer, B.Science, 2007, 318: 1114.
[67] Xiang G., Tang Y., Liu Z., Zhu W., Liu H., Wang J., Zhong G., Li J.& Wang, X.Nano. Lett., 2018, 18: 7809.
[68] Campbell, C. T., Parker, S. C.& Starr, D. E.Science, 2002, 298: 811.
[69] Navrotsky, A., Mazeina, L.& Majzlan, [J].Science, 2008, 319: 1635.
[70] Jadzinsky P. D., Calero G., Ackerson C. J., Bushnell D. A.& Kornberg, R. D.Science, 2007, 318: 430.
[71] Landes C.& El-Sayed, M. A.J. Phys. Chem. A, 2002, 106: 7621.
[72] Wang G., Ji J. W., Zhang X. W., Zhang Y., Wang Q. B., You X. Z.& Xu, X. X.Sci. Rep., 2014, 4: 5480.
[73] Xu H., Han S., Deng R., Su Q., Wei Y., Tang Y., Qin X.& Liu, X.Nat. Photon. , 2021, 15: 732.
[74] Fu Y. S., Du X. W., Kulinich S. A., Qiu J. S., Qin W. J., Li R., Sun J.& Liu, [J].J. Am. Chem. Soc., 2007, 129: 16029.
[75] Giansante C.& Infante, I.J. Phys. Chem. Lett. , 2017, 8: 5209.
[76] Dabrowski A.Adv. Colloid. Interfac., 2001, 93: 135.
[77] Langmuir I.J. Am. Chem. Soc., 1916, 38: 2221.
[78] Langmuir I.J. Am. Chem. Soc., 1917, 39: 1848.
[79] Langmuir I.J. Am. Chem. Soc., 1918, 40: 1361.
[80] Swenson H.& Stadie, N. P.Langmuir, 2019, 35: 5409.
[81] Brunauer, S., Emmett, P. H.& Teller, E.J. Am. Chem. Soc., 1938, 60: 309.
[82] Greiner M. T., Jones T. E., Beeg S., Zwiener L., Scherzer M., Girgsdies F., Piccinin S., Armbrüster M., Knop-Gericke, A. & Schlögl, R.Nat. Chem., 2018, 10: 1008.
[83] Hammer B.& Norskov, J. K.Surf. Sci., 1995, 343: 211.
[84] Hammer B.& Norskov, J. K.Nature, 1995, 376: 238.
[85] Norskov J. K.,Abild-Pedersen, F., Studt, F. & Bligaard, T.Proc. Natl. Acad. Sci. USA, 2011, 108: 937.
[1] 李阳, 牛军峰, 张驰, 王正早, 郑梦源, 商恩香. 水中金属纳米颗粒对细菌的光致毒性机理[J]. 化学进展, 2014, 26(0203): 436-449.