English
新闻公告
More
化学进展 2024, Vol. 36 Issue (3): 285-296 DOI: 10.7536/PC231115   后一篇

• 综述 •

导电酞菁基金属有机框架的高效电催化研究

陆顺, 刘元, 刘鸿*()   

  1. 中国科学院重庆绿色智能技术研究院 重庆 400715
  • 收稿日期:2023-11-21 修回日期:2024-01-15 出版日期:2024-03-24 发布日期:2024-01-26
  • 作者简介:

    刘鸿 研究员,博士生导师,中国科学院重庆绿色智能技术研究院院长。研究方向为环境电化学及污水处理技术。主持国家杰出青年科学基金、国家重大科研仪器研制项目和国家自然科学基金重点项目11项,发表SCI论文100余篇,参编中英文专著5部(章),获授权中国发明专利17件,软件著作权6件。获广东省自然科学一等奖、重庆市自然科学奖励二等奖。

  • 基金资助:
    国家自然科学基金项目(52131003); 国家自然科学基金项目(52122007); 国家自然科学基金项目(52200076); 中国科学院特别研究助理资助项目(E329620101); 重庆市自然科学基金(cstb2022nscq-bhx0035)

Conductive Phthalocyanine-Based Metal-Organic Frameworks for Efficient Electrocatalysis

Shun Lu, Yuan Liu, Hong Liu()   

  1. Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400715, China
  • Received:2023-11-21 Revised:2024-01-15 Online:2024-03-24 Published:2024-01-26
  • Contact: * email: liuhong@cigit.ac.cn (Liu H)
  • Supported by:
    National Natural Science Foundation of China(52131003); National Natural Science Foundation of China(52122007); National Natural Science Foundation of China(52200076); Specific Research Fellowship of Chinese Academy of Sciences(E329620101); Natural Science Foundation of Chongqing(cstb2022nscq-bhx0035)

在满足日益增长的可持续能源和环境保护需求下,开发用于多种电化学场景的新型催化剂发挥着重要作用。导电酞菁基金属有机框架(MOFs)是一类新型的层叠多孔MOFs,具有面内扩展π共轭结构,可以通过促进传质和电子/电荷转移来增强电催化活性。导电酞菁基MOFs具有优异的导电性,使其在如水、氧、二氧化碳和氮还原等各种电催化反应中非常有前景。导电酞菁基MOFs在电化学能量转换和环境研究中表现出良好的活性。本文主要关注导电酞菁基MOFs,而非其他类型的导电MOFs,并全面概述其导电机理和主要的电催化反应,还将讨论在电催化中使用导电酞菁基MOFs作为非均相催化剂的最新进展。此外,本文将探讨与导电酞菁基MOFs在电催化中的应用的挑战和展望。

The development of innovative catalysts for various electrochemical scenarios is crucial in satisfying the growing demands for sustainable energy and environmental conservation. Conductive metal-organic frameworks (c-MOFs) based on phthalocyanine complexes known as phthalocyanine-based c-MOFs, have shown promising potential in electrochemical energy conversion and environmental research. These c-MOFs represent a new category of layer-stacked porous MOFs with in-plane extended π-conjugation structure, which can enhance electrocatalytic activity by facilitating the mass diffusion of reactants and electron/charge transfer. The exceptional promising for a variety electrocatalytic reactions, such as water, oxygen, CO2, and nitrogen conversion. In this work, we focus primarily on phthalocyanine-based c-MOFs rather than other types of c-MOFs, providing a comprehensive overview of their conductive mechanisms and main electrocatalytic reactions. We also cover recent progress in the utilization of phthalocyanine-based c-MOFs as heterogeneous catalysts in electrocatalysis. Furthermore, we explore the challenges related to the utilization of phthalocyanine-based c-MOFs in electrocatalysis. The state-of-the-art research and insights into the future perspectives of phthalocyanine-based c-MOFs as electrocatalysts are also presented and discussed. This work aim to guide the development of phthalocyanine-based c-MOF electrocatalysts with enhanced activity.

Contents

1 Introduction

2 Conductive mechanisms

3 Electrocatalysis

3.1 Water electrolysis

3.2 Oxygen reduction reaction

3.3 Carbon dioxide reduction reaction

3.4 Nitrogen reduction reaction

4 Challenges and outlook

4.1 Catalytic activity

4.2 Conductivity

4.3 Selectivity

4.4 Stability

4.5 Other possible reactions

5 Summary

()
图1 (a)酞菁基MOFs的合成图;(b)酞菁基MOFs在堆叠模式下的一般结构反应的俯视图和侧视图[19]
Fig. 1 (a) Synthetic illustration for phthalocyanine-based c-MOFs; (b) top and side view of a general structural representation of phthalocyanine-based c-MOFs in eclipsed stacking mode. Reproduced with permission from Ref 19. Copyright 2021. American Chemical Society
图2 导电机理:(a)贯穿键;(b)扩展偶联及π-d偶联;(c)通过空间及有机部分的π-π堆积[12]
Fig. 2 (a) The through-bond pathway. (b) The extended conjugation pathway also involves π-d conjugation. (c) The through-space pathway involves π-π stacking of organic moieties. Reproduced with permission from Ref 12. Copyright 2021. American Chemical Society
图3 (a)氧化还原跳跃机制;(b)客体促进途径的电子/电荷传输机制[12]
Fig. 3 Scheme of electron/charge transport via (a) a redox hopping mechanism and (b) a guest-promoted pathway. Reproduced with permission from Ref 12. Copyright 2020. American Chemical Society
图4 (a)MPc-pz的模型结构;(b)DFT计算:HER在MPc-pz上的自由能图[34]
Fig. 4 (a) Schematic model structure of MPc-pz. (b) DFT calculation: free energy diagrams of HER on MPc-pz. Reproduced with permission from Ref 34. Copyright 2020. American Chemical Society
图5 (a)构建MPc-M'-MOF的示意图;(b)NiPc-Ni-MOF的TEM图;(c)MPc-M'-c-MOF的LSV曲线;(d)不同双金属c-MOFs的PDOS谱图;(e)NiPc-Ni c-MOF中Ni-O4和Ni-N4位点的示意图[35]
Fig. 5 (a) Strategy for constructing MPc-M’-MOF; (b) TEM image of NiPc-Ni c-MOF; (c) linear sweep voltammetry (LSV) curves of MPc-M’ c-MOF; (d) PDOS of different dual-metal c-MOFs; (e) scheme of Ni-O4 and Ni-N4 sites in NiPc-Ni c-MOF. Reproduced with permission from Ref 35. Copyright 2021. Royal Society of Chemistry
图6 (a)PcCu-O8-M的模拟结构;(b) PcCu-O8-Co/CNT的极化曲线;(c) ORR过程中的原位拉曼分析;(d)ORR反应机理[38]
Fig. 6 (a) Simulated structure of PcCu-O8-M (red: O, blue: C, white: H, brown: Cu, green: metal atoms, M = Co, Fe, Ni, Cu). (b) ORR polarization curves of PcCu-O8-Co/CNT. (c) In situ Raman analysis during the ORR process. (d) proposed reaction mechanism. Reproduced with permission from Ref 38. Copyright 2021. Wiley-VCH GmbH
图7 (a)NiPc-NiO4 c-MOF的合成示意图;(b)NiPc基c-MOFs在CO2/Ar饱和0.5 M KHCO3中的LSV曲线;(c)CO2RR示意图[46]
Fig. 7 (a) Scheme of NiPc-NiO4 c-MOF nanosheets. Top and side view of their structures with 2 × 2 square grids in AA-stacking mode; (b) LSV curves of NiPc-based c-MOFs in CO2/Ar-saturated 0.5 M KHCO3; (c) Illustration of the CO2RR. Reproduced with permission from Ref 46. Copyright 2021. Wiley-VCH GmbH
图8 (a)MPc-pz的合成示意图;(b) MPc-pz的XRD图谱;(c)FePc-pz上吸附的N2电荷密度差异图;(d)NRR各种中间体的优化结构;(e)NRR在MPc-pz上沿交替路径的自由能分布[34]
Fig. 8 (a) Scheme of MPc-pz; (b) XRD patterns of MPc-pz; (c) charge density differences of N2 adsorbed on FePc-pz; (d) optimized structures of various intermediates for NRR. (e) Free energy profiles of NRR along the alternating pathway on MPc-pz. Reproduced with permission from Ref 34. Copyright 2021. American Chemical Society
图9 酞菁基MOFs面临的挑战
Fig. 9 The challenges in phthalocyanine-based c-MOFs
[1]
Zhong H X, Wang M C, Chen G B, Dong R H, Feng X L. ACS Nano, 2022, 16(2): 1759.

doi: 10.1021/acsnano.1c10544     URL    
[2]
Lu S, Hummel M, Gu Z R, Wang Y C, Wang K L, Pathak R, Zhou Y, Jia H X, Qi X Q, Zhao X H, Xu B B, Liu X T. ACS Sustainable Chem. Eng., 2021, 9(4): 1703.

doi: 10.1021/acssuschemeng.0c07614     URL    
[3]
Wang H D, Zheng X Q, Fang L, Lu S. ChemElectroChem, 2023, 10(13): e202300249.

doi: 10.1002/celc.v10.13     URL    
[4]
Huang H, Zhao Y, Bai Y M, Li F M, Zhang Y, Chen Y. Adv. Sci., 2020, 7(9): 2000012.

doi: 10.1002/advs.v7.9     URL    
[5]
Lu S, Hummel M, Gu Z R, Gu Y, Cen Z S, Wei L, Zhou Y, Zhang C Z, Yang C. Int. J. Hydrog. Energy, 2019, 44(31): 16144.
[6]
Lu S, Zheng X Q, Fang L, Yin F J, Liu H. Electrochem. Commun., 2023, 157: 107599.

doi: 10.1016/j.elecom.2023.107599     URL    
[7]
Cu H Y, Wang T Y, Wang C C. Progress in Chemistry, 2022, 34(12): 2700.
(楚弘宇, 王天予, 王崇臣. 化学进展, 2022, 34(12): 2700.)
[8]
Zhuang Y, Liu Y L, Tang Z Y. Progress in Chemistry, 2021, 33(1): 25.
(严壮, 刘雅玲, 唐智勇. 化学进展, 2021, 33(1): 25.)
[9]
Jia H X, Lu S, Ra Shin S H, Sushko M L, Tao X P, Hummel M, Thallapally P K, Liu J, Gu Z R. J. Power Sources, 2022, 526: 231163.

doi: 10.1016/j.jpowsour.2022.231163     URL    
[10]
Lu S, Jia H X, Hummel M, Wu Y N, Wang K L, Qi X Q, Gu Z R. RSC Adv., 2021, 11(8): 4472.

doi: 10.1039/D0RA10522H     URL    
[11]
Yan B Y, Li X F, Huang W Q. Progress in Chemistry, 2022, 34(11): 2417.
(闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 化学进展, 2022, 34 (11): 2417.
[12]
Xie L S, Skorupskii G, Dincă M. Chem. Rev., 2020, 120(16): 8536.

doi: 10.1021/acs.chemrev.9b00766     URL    
[13]
Kousar N, Giddaerappa, Sannegowda L K. Int. J. Hydrog. Energy, 2024, 50: 37.
[14]
Monama G R, Mdluli S B, Mashao G, Makhafola M D, Ramohlola K E, Molapo K M, Hato M J, Makgopa K, Iwuoha E I, Modibane K D. Renew. Energy, 2018, 119: 62.

doi: 10.1016/j.renene.2017.11.084     URL    
[15]
Lu S, Hummel M, Kang S, Gu Z R. J. Electrochem. Soc., 2020, 167(4): 046515.

doi: 10.1149/1945-7111/ab7982     URL    
[16]
Zhang P P, Wang M C, Liu Y N, Fu Y B, Gao M M, Wang G, Wang F X, Wang Z Y, Chen G B, Yang S, Liu Y W, Dong R H, Yu M H, Lu X, Feng X L. J. Am. Chem. Soc., 2023, 145(11): 6247.

doi: 10.1021/jacs.2c12684     URL    
[17]
Mani P, Son Y, Yoon M. CrystEngComm, 2023, 25(31): 4395.

doi: 10.1039/D3CE00407D     URL    
[18]
Jia H X, Yao Y C, Zhao J T, Gao Y Y, Luo Z L, Du P W. J. Mater. Chem. A, 2018, 6(3): 1188.

doi: 10.1039/C7TA07978H     URL    
[19]
Meng Z, Luo J M, Li W Y, Mirica K A. J. Am. Chem. Soc., 2020, 142(52): 21656.

doi: 10.1021/jacs.0c07041     URL    
[20]
Liu K K, Meng Z, Fang Y, Jiang H L. eScience, 2023, 3(6): 100133.

doi: 10.1016/j.esci.2023.100133     URL    
[21]
Wang M C, Dong R H, Feng X L. Chem. Soc. Rev., 2021, 50(4): 2764.

doi: 10.1039/D0CS01160F     URL    
[22]
Gao Z Q, Wang C Y, Li J J, Zhu Y T, Zhang Z C, Hu W P. Acta Phys. Chim. Sin., 2021, 37(7): 2010025.
[23]
Guo L Z, Sun J F, Wei J X, Liu Y, Hou L R, Yuan C Z. Carbon Energy, 2020, 2(2): 203.

doi: 10.1002/cl2.v2.2     URL    
[24]
Liu J J, Song X Y, Zhang T, Liu S Y, Wen H R, Chen L. Angew. Chem., 2021, 133(11): 5672.

doi: 10.1002/ange.v133.11     URL    
[25]
Varsha M V, Nageswaran G. J. Electrochem. Soc., 2020, 167(13): 136502.

doi: 10.1149/1945-7111/abb4f5    
[26]
Yang M R, Xie Y X, Zhu D R. Progress in Chemistry, 2023, 35(5): 683.
(杨孟蕊, 谢雨欣, 朱敦如. 化学进展, 2023, 35(5): 683.).
[27]
Xu G Y, Zhu C Y, Gao G. Small, 2022, 18(44): 2203140.

doi: 10.1002/smll.v18.44     URL    
[28]
Zhang M D, Si D H, Yi J D, Yin Q, Huang Y B, Cao R. Sci. China Chem., 2021, 64(8): 1332.

doi: 10.1007/s11426-021-1022-3    
[29]
Zeng Q, Xian W R, Zhong Y H, Chung L H, Liao W M, He J. J. Solid State Chem., 2020, 285: 121234.

doi: 10.1016/j.jssc.2020.121234     URL    
[30]
Zheng X Q, Wang Z C, Zhou Q, Wang Q M, He W, Lu S. J. Energy Chem., 2024, 88: 242.

doi: 10.1016/j.jechem.2023.08.051     URL    
[31]
Yan C H, Shen Y, Lu S, Yuan J H, Li Y D, Yang X H, Han E S, He Y Z. Ind. Eng. Chem. Res., 2023, 62(19): 7373.

doi: 10.1021/acs.iecr.3c00479     URL    
[32]
Liao W Y, Zhao Q, Wang S S, Ran Y L, Su H, Gan R, Lu S, Zhang Y. J. Catal., 2023, 428: 115161.

doi: 10.1016/j.jcat.2023.115161     URL    
[33]
Nie M, Liu X W, He B, Li Q, Du S J, Lu S, Jiang C Y, Lei D. J. Electrochem. Soc., 2016, 163(7): H485.

doi: 10.1149/2.0201607jes     URL    
[34]
Zhong H X, Wang M C, Ghorbani-Asl M, Zhang J C, Ly K H, Liao Z Q, Chen G B, Wei Y D, Biswal B P, Zschech E, Weidinger I M, Krasheninnikov A V, Dong R H, Feng X L. J. Am. Chem. Soc., 2021, 143(47): 19992.

doi: 10.1021/jacs.1c11158     URL    
[35]
Li J W, Liu P, Mao J X, Yan J Y, Song W B. J. Mater. Chem. A, 2021, 9(3): 1623.

doi: 10.1039/D0TA10870G     URL    
[36]
Zhu Y X, Zhao W Y, Li C Z, Liao S J. Progress in Chemistry, 2022, 34(6): 1337.
(朱月香, 赵伟悦, 李朝忠, 廖世军. 化学进展, 2022, 34(6): 1337.)
[37]
Dominic A M, Wang Z Y, Kuc A, Petkov P, Ly K H, Pham T L H, Kutzschbach M, Cao Y Y, Bachmann J, Feng X L, Dong R H, Weidinger I M. J. Phys. Chem. C, 2023, 127(15): 7299.

doi: 10.1021/acs.jpcc.2c08819     URL    
[38]
Zhong H X, Ly K, Wang M C, Krupskaya Y, Han X C, Zhang J C, Zhang J, Kataev V, Büchner B, Weidinger I, Kaskel S, Liu P, Chen M W, Dong R H, Feng X L. Angewandte Chemie, 2019, 58(31): 10677)
[39]
Li H F, Wei P F, Gao D F, Wang G X. Curr. Opin. Green Sustain. Chem., 2022, 34: 100589.
[40]
Li J Y, Zhang P, Pan Y. Progress in Chemistry, 2023, 35(4): 643.
(李佳烨, 张鹏, 潘原. 化学进展, 2023, 35(4): 643.).
[41]
Wang J W, Zhou X C, Wang Y, Li Y F. J. Phys. Chem. C, 2023, 127(30): 14733.

doi: 10.1021/acs.jpcc.3c02140     URL    
[42]
Lu S, Wang Y C, Xiang H, Lei H H, Xu B B, Xing L, Yu E H, Liu T X. J. Energy Storage, 2022, 52: 104764.

doi: 10.1016/j.est.2022.104764     URL    
[43]
Mei X H, Xu W L. iScience, 2023, 26(12): 108499.

doi: 10.1016/j.isci.2023.108499     URL    
[44]
Yin C Y, Li Q, Zheng J, Ni Y Q, Wu H Q, Kjøniksen A L, Liu C T, Lei Y P, Zhang Y. Adv. Powder Mater., 2022, 1(4): 100055.
[45]
Zhang M D, Si D H, Yi J D, Zhao S S, Huang Y B, Cao R. Small, 2020, 16(52): 2005254.

doi: 10.1002/smll.v16.52     URL    
[46]
Yi J D, Si D H, Xie R K, Yin Q, Zhang M D, Wu Q, Chai G L, Huang Y B, Cao R. Angew. Chem., 2021, 133(31): 17245.

doi: 10.1002/ange.v133.31     URL    
[47]
He X T, Ling Z Q, Peng X W, Yang X H, Ma L, Lu S. Electrochem. Commun., 2023, 148: 107441.

doi: 10.1016/j.elecom.2023.107441     URL    
[48]
Fang L, Wang S, Lu S, Yin F J, Dai Y J, Chang L, Liu H. Chin. Chemical Lett., 2024, 35(4): 108864.

doi: 10.1016/j.cclet.2023.108864     URL    
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 夏博文, 朱斌, 刘静, 谌春林, 张建. 电催化氧化制备2,5-呋喃二甲酸[J]. 化学进展, 2022, 34(8): 1661-1677.
[3] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[4] 孙浩, 王超鹏, 尹君, 朱剑. 用于电催化析氧反应电极的制备策略[J]. 化学进展, 2022, 34(3): 519-532.
[5] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[6] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[7] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[8] 王亚奇, 吴强, 陈俊玲, 梁峰. 狄尔斯-阿尔德反应催化剂[J]. 化学进展, 2022, 34(2): 474-486.
[9] 陈向娟, 王欢, 安伟佳, 刘利, 崔文权. 有机碳材料在光电催化系统中的作用[J]. 化学进展, 2022, 34(11): 2361-2372.
[10] 王文婧, 曾滴, 王举雪, 张瑜, 张玲, 王文中. 铋基金属有机框架的合成与应用[J]. 化学进展, 2022, 34(11): 2405-2416.
[11] 任艳梅, 王家骏, 王平. 二硫化钼析氢电催化剂[J]. 化学进展, 2021, 33(8): 1270-1279.
[12] 刘晓璐, 耿钰晓, 郝然, 刘玉萍, 袁忠勇, 李伟. 环境条件下电催化氮还原的现状、挑战与展望[J]. 化学进展, 2021, 33(7): 1074-1091.
[13] 韩嘉琦, 李志达, 纪德强, 苑丹丹, 吴红军. 单原子改性二硫化钼电催化析氢[J]. 化学进展, 2021, 33(12): 2392-2403.
[14] 刘雪晨, 邢娟娟, 王海鹏, 周沅逸, 张玲, 王文中. HMF催化合成生物基聚酯单体FDCA[J]. 化学进展, 2020, 32(9): 1294-1306.
[15] 张冀宁, 曹爽, 胡文平, 朴玲钰. 光电催化海水分解制氢[J]. 化学进展, 2020, 32(9): 1376-1385.